4 research outputs found

    The Effectiveness of Natural and Synthetic Antioxidant Additives on the Oxidation Stability of Biodiesel Synthesized from Fresh and Waste Sunflower Oilesized from fresh and waste sunflower oil

    No full text
    Biodiesel fuel is the realistic fuel for the future due to its environmental, economic and energetic benefits. However, the degradation and instability during biodiesel storage and application present the major disadvantages and hence a modern scientific challenge. The aim of this study was to choose optimal parameters for biodiesel synthesis from fresh and waste sunflower cooking oil and to investigate the possibilities of increasing its resistance towards oxidative degradation. Various physico-chemical characteristics essential for the quality estimation of the resulting biodiesel products were compared before testing the effectiveness of natural and synthetic antioxidants. Butylated hydroxytoluene (BHT), carvacrol and α-tocopherol were added to the biodiesel in different concentrations in order to determine their efficiency during the Schaal oven test. Results proved that both, fresh and waste oil can be valuable sources for the synthesis of biodiesel that meets European and American quality standards. Among the antioxidants, BHT was the most efficient one in both types of biodiesel and its usage would be recommended at the concentration of 1000 ppm. The findings present a cost-effective and environmentally friendly source for biodiesel production with improved properties - considerably enhanced resistance to oxidative degradation, where synthetic antioxidants are given the priority. DOI: http://dx.doi.org/10.17807/orbital.v10i7.1174  </p

    Could atmospheric carbon be driving sedimentation?

    No full text
    Purpose: The objective of this study was to provide insights into the most recent responses of sediments to climate change and their capability to sequester atmospheric carbon (C). Methods: Three sediment cores were collected, one from the western Black Sea, and two from the southern Adriatic Sea. Cores were extruded and sectioned into 1 cm or 0.5 cm intervals. Sections were frozen, weighed, freeze-dried, and then weighed again to obtain dry weights. Freeze-dried samples were dated by using lead 210 (210Pb) and cesium 137/ americium 241 (137Cs/241Am). Organic and inorganic C were determined by combustion. Particle size distribution was determined using a Beckman Coulter particle size analyzer (LS 13,320; Beckman Coulter Inc.). Mineralogical analyses were carried out by a Philips X’Pert powder diffractometer. Results: Sedimentation and organic and inorganic C accumulation rates increased with time in both the Black Sea and the Adriatic Sea. The increase in accumulation rates continued after the global introduction in the early 1970s of controls on the release of phosphorus (P) into the environment and despite the reduced sediment yield of major rivers (Po and Danube). Therefore, the increased accumulation of organic and inorganic C in the sediments cannot be assigned only to nutrient availability. Instead, we suggest that the increase in organic C is the consequence of the increase in atmospheric C, which has made more carbon dioxide (CO2) available to phytoplankton, thus enabling more efficient photosynthesis. This process known as CO2 fertilization may increase the organic C accumulation in sediments. Simultaneously, the increase of sea temperatures decreases the calcite solubility resulting in increases of the inorganic C accumulation. Conclusion: Our results suggest that long-term, general increases in accumulation rates of organic and inorganic C in sediments are the consequence of increases in atmospheric C. This shows that coastal sediments play an important role in C uptake and thus in regulating the Earth’s climate
    corecore