4 research outputs found

    KARAKTERISASI MICRORING RESONATOR (MRR) BERBASIS SILICON-ON-INSULATOR (SOI) DAN SENSITIVITAS SENSOR BERBASIS MRR UNTUK DETEKSI KADAR GLUKOSA

    Get PDF
    Karakterisasi dan simulasi Microring Resonator (MRR) berbasis Silicon-on-Insulator (SOI) dengan SiO_2 sebagai lapisan penyangga telah dilakukan untuk mengukur nilai quality factor dan sensitivitas dari MRR sebagai sensor untuk keperluan deteksi kadar glukosa. MRR berbasis SOI yang digunakan dalam penelitian ini telah difabrikasi sebelumnya menggunakan sistem Electron Beam Litography (EBL) dan dikarakterisasi morfologinya menggunakan Scanning Electron Microscope (SEM) sehingga diketahui parameter geometrisnya seperti radius cincin, gap, dan lebar pandu gelombang dengan ukuran masing-masing ~ 4,35 μm, ~ 4,95 x 10^(-2) μm, dan ~ 5,02 x 10^(-1) μm. Penelitian ini bertujuan untuk melakukan karakterisasi nilai quality factor menggunakan Optical Spectrum Analyzer (OSA) dan menentukan nilai sensitivitas sensor berbasis MRR dalam mendeteksi kadar glukosa dengan simulasi menggunakan metode Finite Difference Time Domain (FDTD). Hasil karakterisasi nilai quality factor menggunakan OSA menunjukan nilai rata-rata quality factor sebesar 2,92 x 10^3, sedangkan nilai quality factor yang diperoleh melalui simulasi 3D FDTD adalah 3,39 x 10^3. Berdasarkan hasil tersebut dapat dilihat bahwa simulasi dengan menggunakan metode 3D FDTD dapat digunakan untuk melakukan aproksimasi terhadap hasil eksperimental. Oleh karena itu, nilai sensitivitas sensor berbasis MRR juga dapat diaproksimasi dengan menggunakan metode yang sama, yaitu simulasi dengan metode 3D FDTD. Adapun nilai sensitivitas sensor berbasis MRR untuk deteksi kadar glukosa adalah 69,44 nm/RIU

    Refractive index and sensing of glucose molarities determined using Au-Cr K-SPR at 670/785 nm wavelength

    Get PDF
    In this paper, we determine the optical refractive indices of different molarities of glucose using nano-laminated gold/chromium (Au-Cr) thin film via Kretschmann-based Surface Plasmon Resonance (K-SPR) sensing with angular interrogation. The nano-laminated Au-Cr K-SPR sensor detects the glucose presence in low- and high-concentration of 4-12 mmol/L and 55-277 mmol/L, respectively, under the exposure of 670 nm and 785 nm optical wavelengths. The experimental results showed that the minimum limit of detection (LOD) of Au-Cr K-SPR is 4 mmol/L and the glucose sensor sensitivities are in average of 3.41 o/M and 2.73o/M at 670 nm and 785 nm optical wavelength, respectively. Stable sensitivity for each concentration also shown from the sensorgram results, indicates the stable performance of nano-laminated Au-Cr SPR sensor to detect glucose in the range from mmol/L up to dmol/L. Values of refractive indices for glucose molarities obtained are 1.33187 (4 mmol/L) and 1.3191 (4 mmol/L) at 670 and 785 nm wavelength, respectively. These RI values are beneficial for numerical simulation of glucose sensors using nano-laminated Au-Cr thin films which have been reported for the first time. The sensor can be eventually deployed in integrated photonic sensing devices comprising of multiple analyte detection for lab-on-chip (LoC) and point-of care (PoC) applications

    Enhanced Sensitivity of Microring Resonator-Based Sensors Using the Finite Difference Time Domain Method to Detect Glucose Levels for Diabetes Monitoring

    No full text
    The properties of light and its interaction with biological analytes have made it possible to design sophisticated and reliable optical-based biomedical sensors. In this paper, we report the simulation, design, and fabrication of microring resonator (MRR)-based sensors for the detection of diabetic glucose levels. Electron Beam Lithography (EBL) with 1:1 hydrogen silsesquioxane (HSQ) negative tone resist were used to fabricate MRR on a Silicon-on-Insulator (SOI) platform. Scanning Electron Microscopy (SEM) was then used to characterize the morphology of the MRR device. The full-width at half-maximum (FWHM) and quality factors of MRR were obtained by using a tunable laser source (TLS) and optical spectrum analyzer (OSA). In this paper, the three-dimensional Finite Difference Time Domain (3D FDTD) approach has been used to simulate the proposed design. The simulation results show an accurate approximation with the experimental results. Next, the sensitivity of MRR-based sensors to detect glucose levels is obtained. The sensitivity value for glucose level detection in the range 0% to 18% is 69.44 nm/RIU. This proved that our MRR design has a great potential as a sensor to detect diabetic glucose levels

    Enhanced sensitivity of microring resonator-based sensors using the finite difference time domain method to detect glucose levels for diabetes monitoring

    Get PDF
    The properties of light and its interaction with biological analytes have made it possible to design sophisticated and reliable optical-based biomedical sensors. In this paper, we report the simulation, design, and fabrication of microring resonator (MRR)-based sensors for the detection of diabetic glucose levels. Electron Beam Lithography (EBL) with 1:1 hydrogen silsesquioxane (HSQ) negative tone resist were used to fabricate MRR on a Silicon-on-Insulator (SOI) platform. Scanning Electron Microscopy (SEM) was then used to characterize the morphology of the MRR device. The full-width at half-maximum (FWHM) and quality factors of MRR were obtained by using a tunable laser source (TLS) and optical spectrum analyzer (OSA). In this paper, the three-dimensional Finite Difference Time Domain (3D FDTD) approach has been used to simulate the proposed design. The simulation results show an accurate approximation with the experimental results. Next, the sensitivity of MRR-based sensors to detect glucose levels is obtained. The sensitivity value for glucose level detection in the range 0% to 18% is 69.44 nm/RIU. This proved that our MRR design has a great potential as a sensor to detect diabetic glucose levels
    corecore