6,988 research outputs found

    Main Belt Asteroids with WISE/NEOWISE: Near-Infrared Albedos

    Get PDF
    We present revised near-infrared albedo fits of 2835 Main Belt asteroids observed by WISE/NEOWISE over the course of its fully cryogenic survey in 2010. These fits are derived from reflected-light near-infrared images taken simultaneously with thermal emission measurements, allowing for more accurate measurements of the near-infrared albedos than is possible for visible albedo measurements. As our sample requires reflected light measurements, it undersamples small, low albedo asteroids, as well as those with blue spectral slopes across the wavelengths investigated. We find that the Main Belt separates into three distinct groups of 6%, 16%, and 40% reflectance at 3.4 um. Conversely, the 4.6 um albedo distribution spans the full range of possible values with no clear grouping. Asteroid families show a narrow distribution of 3.4 um albedos within each family that map to one of the three observed groupings, with the (221) Eos family being the sole family associated with the 16% reflectance 3.4 um albedo group. We show that near-infrared albedos derived from simultaneous thermal emission and reflected light measurements are an important indicator of asteroid taxonomy and can identify interesting targets for spectroscopic followup.Comment: Accepted for publication in ApJ; full version of Table1 to be published electronically in the journa

    A spectroscopically confirmed z=1.327 galaxy-scale deflector magnifying a z~8 Lyman-Break galaxy in the Brightest of Reionizing Galaxies survey

    Full text link
    We present a detailed analysis of an individual case of gravitational lensing of a z8z\sim8 Lyman-Break galaxy (LBG) in a blank field, identified in Hubble Space Telescope imaging obtained as part of the Brightest of Reionizing Galaxies survey. To investigate the close proximity of the bright (mAB=25.8m_{AB}=25.8) Y098Y_{098}-dropout to a small group of foreground galaxies, we obtained deep spectroscopy of the dropout and two foreground galaxies using VLT/X-Shooter. We detect H-α\alpha, H-β\beta, [OIII] and [OII] emission in the brightest two foreground galaxies (unresolved at the natural seeing of 0.80.8 arcsec), placing the pair at z=1.327z=1.327. We can rule out emission lines contributing all of the observed broadband flux in H160H_{160} band at 70σ70\sigma, allowing us to exclude the z8z\sim8 candidate as a low redshift interloper with broadband photometry dominated by strong emission lines. The foreground galaxy pair lies at the peak of the luminosity, redshift and separation distributions for deflectors of strongly lensed z8z\sim8 objects, and we make a marginal detection of a demagnified secondary image in the deepest (J125J_{125}) filter. We show that the configuration can be accurately modelled by a singular isothermal ellipsoidal deflector and a S\'{e}rsic source magnified by a factor of μ=4.3±0.2\mu=4.3\pm0.2. The reconstructed source in the best-fitting model is consistent with luminosities and morphologies of z8z\sim8 LBGs in the literature. The lens model yields a group mass of 9.62±0.31×1011M9.62\pm0.31\times10^{11} M_{\odot} and a stellar mass-to-light ratio for the brightest deflector galaxy of M/LB=2.30.6+0.8M/LM_{\star}/L_{B}=2.3^{+0.8}_{-0.6} M_{\odot}/L_{\odot} within its effective radius. The foreground galaxies' redshifts would make this one of the few strong lensing deflectors discovered at z>1z>1.Comment: Accepted for publication in MNRAS. 16 pages, 11 figures, 3 table

    NEOWISE Reactivation Mission Year One: Preliminary Asteroid Diameters and Albedos

    Get PDF
    We present preliminary diameters and albedos for 7,959 asteroids detected in the first year of the NEOWISE Reactivation mission. 201 are near-Earth asteroids (NEAs). 7,758 are Main Belt or Mars-crossing asteroids. 17% of these objects have not been previously characterized using WISE or NEOWISE thermal measurements. Diameters are determined to an accuracy of ~20% or better. If good-quality H magnitudes are available, albedos can be determined to within ~40% or better.Comment: 42 pages, 5 figure

    NEOWISE Reactivation Mission Year Three: Asteroid Diameters and Albedos

    Get PDF
    The Near-Earth Object Wide-field Infrared Survey Explorer (NEOWISE) reactivation mission has completed its third year of surveying the sky in the thermal infrared for near-Earth asteroids and comets. NEOWISE collects simultaneous observations at 3.4 um and 4.6 um of solar system objects passing through its field of regard. These data allow for the determination of total thermal emission from bodies in the inner solar system, and thus the sizes of these objects. In this paper we present thermal model fits of asteroid diameters for 170 NEOs and 6110 MBAs detected during the third year of the survey, as well as the associated optical geometric albedos. We compare our results with previous thermal model results from NEOWISE for overlapping sample sets, as well as diameters determined through other independent methods, and find that our diameter measurements for NEOs agree to within 26% (1-sigma) of previously measured values. Diameters for the MBAs are within 17% (1-sigma). This brings the total number of unique near-Earth objects characterized by the NEOWISE survey to 541, surpassing the number observed during the fully cryogenic mission in 2010.Comment: Accepted for publication in A

    Ion-beam modification of fullerene

    Get PDF
    The response of thin films of fullerene (C60) to energetic ion impact is investigated. The diagnostics employed include Fourier-transform infrared and Raman spectroscopies, cross-sectional transmission electron microscopy, and atomic force microscopy. By combining the information obtained from these diagnostics with that from the dependence of the conductivity on ion dose, it is concluded that each C60 molecule completely disintegrates when hit by an energetic ion. The cross section for the destruction is about 6×10-13 cm2 for irradiation with 620-keV Xe ions. The disintegration occurs when C atoms are knocked out of the molecule either directly by the impinging ion or by an energetic knock-on C atom within the damage cascade. This process is quite different from the Coulomb-explosion mechanism previously proposed in the literature. For very low ion doses

    The Broad Absorption Line Tidal Disruption Event iPTF15af: Optical and Ultraviolet Evolution

    Get PDF
    We present multi-wavelength observations of the tidal disruption event (TDE) iPTF15af, discovered by the intermediate Palomar Transient Factory (iPTF) survey at redshift z=0.07897z=0.07897. The optical and ultraviolet (UV) light curves of the transient show a slow decay over five months, in agreement with previous optically discovered TDEs. It also has a comparable black-body peak luminosity of Lpeak1.5×1044L_{\rm{peak}} \approx 1.5 \times 10^{44} erg/s. The inferred temperature from the optical and UV data shows a value of (3-5) ×104\times 10^4 K. The transient is not detected in X-rays up to LX<3×1042L_X < 3 \times 10^{42}erg/s within the first five months after discovery. The optical spectra exhibit two distinct broad emission lines in the He II region, and at later times also Hα\alpha emission. Additionally, emission from [N III] and [O III] is detected, likely produced by the Bowen fluorescence effect. UV spectra reveal broad emission and absorption lines associated with high-ionization states of N V, C IV, Si IV, and possibly P V. These features, analogous to those of broad absorption line quasars (BAL QSOs), require an absorber with column densities NH>1023N_{\rm{H}} > 10^{23} cm2^{-2}. This optically thick gas would also explain the non-detection in soft X-rays. The profile of the absorption lines with the highest column density material at the largest velocity is opposite that of BAL QSOs. We suggest that radiation pressure generated by the TDE flare at early times could have provided the initial acceleration mechanism for this gas. Spectral UV line monitoring of future TDEs could test this proposal.Comment: 20 pages, 12 figures, published in Ap

    Galaxy Zoo Supernovae

    Get PDF
    This paper presents the first results from a new citizen science project: Galaxy Zoo Supernovae. This proof of concept project uses members of the public to identify supernova candidates from the latest generation of wide-field imaging transient surveys. We describe the Galaxy Zoo Supernovae operations and scoring model, and demonstrate the effectiveness of this novel method using imaging data and transients from the Palomar Transient Factory (PTF). We examine the results collected over the period April-July 2010, during which nearly 14,000 supernova candidates from PTF were classified by more than 2,500 individuals within a few hours of data collection. We compare the transients selected by the citizen scientists to those identified by experienced PTF scanners, and find the agreement to be remarkable - Galaxy Zoo Supernovae performs comparably to the PTF scanners, and identified as transients 93% of the ~130 spectroscopically confirmed SNe that PTF located during the trial period (with no false positive identifications). Further analysis shows that only a small fraction of the lowest signal-to-noise SN detections (r > 19.5) are given low scores: Galaxy Zoo Supernovae correctly identifies all SNe with > 8{\sigma} detections in the PTF imaging data. The Galaxy Zoo Supernovae project has direct applicability to future transient searches such as the Large Synoptic Survey Telescope, by both rapidly identifying candidate transient events, and via the training and improvement of existing machine classifier algorithms.Comment: 13 pages, 10 figures, accepted MNRA

    The Rising Light Curves of Type Ia Supernovae

    Get PDF
    We present an analysis of the early, rising light curves of 18 Type Ia supernovae (SNe Ia) discovered by the Palomar Transient Factory (PTF) and the La Silla-QUEST variability survey (LSQ). We fit these early data flux using a simple power-law (f(t)=α×tn)(f(t) = {\alpha\times t^n}) to determine the time of first light (t0)({t_0}), and hence the rise-time (trise)({t_{rise}}) from first light to peak luminosity, and the exponent of the power-law rise (nn). We find a mean uncorrected rise time of 18.98±0.5418.98 {\pm} 0.54 days, with individual SN rise-times ranging from 15.9815.98 to 24.724.7 days. The exponent n shows significant departures from the simple 'fireball model' of n=2n = 2 (or f(t)t2{f(t) \propto t^2}) usually assumed in the literature. With a mean value of n=2.44±0.13n = 2.44 {\pm} 0.13, our data also show significant diversity from event to event. This deviation has implications for the distribution of 56Ni throughout the SN ejecta, with a higher index suggesting a lesser degree of 56Ni mixing. The range of n found also confirms that the 56Ni distribution is not standard throughout the population of SNe Ia, in agreement with earlier work measuring such abundances through spectral modelling. We also show that the duration of the very early light curve, before the luminosity has reached half of its maximal value, does not correlate with the light curve shape or stretch used to standardise SNe Ia in cosmological applications. This has implications for the cosmological fitting of SN Ia light curves.Comment: 19 pages, 19 figures, accepted for publication in MNRA
    corecore