8 research outputs found

    Development of Tannin Modified Membrane for Spectrophotometric Determination of Lead

    Get PDF
    Tannin modified membrane (TM) was developed for preconcentration and detection of trace level of lead (Pb) using a complex formation between Pb2+ and (4-2-pyridylazo)-resorcinol (PAR). The extraction membrane was prepared by immobilizing tannin on a rectangular cellulose filter paper sized 7 x 9 cm2 and then cut into a small circular shape of 13-mm diameter to fit with a commercially available syringe filter holder. The 4-layered of the TMs was employed for preconcentration of Pb2+. An aliquot of 50 mL of standard or sample containing Pb2+ was loaded by using a 50-mL syringe that connected with a filter holder. To accelerate speed of analysis, peristaltic pump was used by connecting to a bottom side of the filter holder. For loading step, a flow rate of 4.4 mL/min was used. Elution of Pb2+ was accomplished by manually passing 5 mL of 0.1 M HCl through the membrane. An aliquot of 3 mL of the eluent was then mixed with the PAR reagent under the controlled pH of 9. Absorbance of 522 nm was monitored. Various optimization parameters affecting the immobilization of tannin on the cellulose filter paper were investigated. Under optimized conditions, linear calibration was obtained from 0.1 mg/L to 1.25 mg/L of Pb2+ solution. Acceptable precision of 2.0% (n = 5) was obtained. Good recoveries of 90.40 and 91.99 were achieved for drinking water samples

    Quality control of gasohol using a micro-unit for membraneless gas diffusion

    Get PDF
    This work describes the development of a new spectrophotometric flow technique suitable for monitoring of ethanol content in gasohol fuel. Membraneless gas-diffusion (MBL-GD) was applied with one-step aqueous extraction of gasohol (1:2 gasohol/water). Segments of aqueous extract and color developing reagent were allowed to flow into two separate channels in the MBL-GD device. Inside the device, ethanol vapor can diffuse across a small headspace between the two channels (donor and acceptor). Introduction of an air-segment behind the zone of acceptor reagent to stop dispersion of the colored zone greatly improves the rapidity of analysis using this MBL-GD technique. Two methods were developed for quality control of gasohol by measuring ethanol content. Method I is suitable for direct calibration of E5 and E10. Method II is recommended for E20. These methods have high accuracy with good precision (% RSD: 1 to 4.9, n&#8201;=&#8201;45) and have a sample throughput of 26 samples per hour. E10 samples were compared with analysis using a standard GC method. </p

    āļāļēāļĢāļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāļŦāļēāļ›āļĢāļīāļĄāļēāļ“āđ„āļšāđ‚āļ­āļˆāļĩāļ™āļīāļāđ€āļ­āļĄāļĩāļ™āļšāļēāļ‡āļŠāļ™āļīāļ”āđƒāļ™āđ„āļŠāđ‰āļāļĢāļ­āļāļžāļ·āđ‰āļ™āđ€āļĄāļ·āļ­āļ‡āđ„āļ—āļĒ (QUANTITATIVE OF SOME BIOGENIA AMINE IN THAI TRADITIONAL SAUSAGE)

    No full text
    āđ„āļšāđ‚āļ­āļˆāļĩāļ™āļīāļāđ€āļ­āļĄāļĩāļ™ āđ„āļ”āđ‰āđāļāđˆ āļŪāļĩāļŠāļ•āļēāļĄāļĩāļ™ āļžāļīāļ§āđ€āļ—āļĢāļŠāļ‹āļĩāļ™ āđāļĨāļ°āļ„āļēāļĢāđŒāļ”āļēāđ€āļ§āļĢāļĩāļ™ āļŠāļēāļĄāļēāļĢāļ–āļžāļšāđƒāļ™āļ­āļēāļŦāļēāļĢāļŦāļĨāļēāļĒāļŠāļ™āļīāļ”āđ‚āļ”āļĒāđ€āļ‰āļžāļēāļ°āļ­āļĒāđˆāļēāļ‡āļĒāļīāđˆāļ‡āļ­āļēāļŦāļēāļĢāļ—āļĩāđˆāļĄāļĩāđ‚āļ›āļĢāļ•āļĩāļ™āļŠāļđāļ‡ āđƒāļ™āļ‡āļēāļ™āļ§āļīāļˆāļąāļĒāļ™āļĩāđ‰āđ„āļ”āđ‰āđƒāļŦāđ‰āļ„āļ§āļēāļĄāļŠāļ™āđƒāļˆāļ•āđˆāļ­āļāļēāļĢāļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāđ„āļŠāđ‰āļāļĢāļ­āļāļžāļ·āđ‰āļ™āđ€āļĄāļ·āļ­āļ‡āļ‚āļ­āļ‡āđ„āļ—āļĒāļ—āļĩāđˆāļĄāļĩāļŠāļ·āđˆāļ­āļ§āđˆāļēāđ„āļŠāđ‰āļāļĢāļ­āļāļ­āļĩāļŠāļēāļ™ āđ„āļŠāđ‰āļ­āļąāđˆāļ§ āđāļĨāļ°āļŦāļĄāđˆāļģ āļ‹āļķāđˆāļ‡āđ„āļŠāđ‰āļāļĢāļ­āļāđ€āļŦāļĨāđˆāļēāļ™āļĩāđ‰āļ—āļģāļĄāļēāļˆāļēāļāđ€āļ™āļ·āđ‰āļ­āļŠāļąāļ•āļ§āđŒāđ€āļ›āđ‡āļ™āļŦāļĨāļąāļāđāļĨāļ°āļœāđˆāļēāļ™āļāļĢāļ°āļšāļ§āļ™āļāļēāļĢāļŦāļĄāļąāļāļ‹āļķāđˆāļ‡āđ€āļ›āđ‡āļ™āļāļēāļĢāļ–āļ™āļ­āļĄāļ­āļēāļŦāļēāļĢāļ­āļĩāļāļ§āļīāļ˜āļĩāļŦāļ™āļķāđˆāļ‡ āļāļēāļĢāļŠāļāļąāļ”āļŠāļēāļĢāđ„āļšāđ‚āļ­āļˆāļĩāļ™āļīāļāđ€āļ­āļĄāļĩāļ™āļ—āļąāđ‰āļ‡ 3 āļŠāļ™āļīāļ”āļ­āļ­āļāļˆāļēāļāļ•āļąāļ§āļ­āļĒāđˆāļēāļ‡āđ„āļŠāđ‰āļāļĢāļ­āļāļ”āđ‰āļ§āļĒāļ§āļīāļ˜āļĩāļ—āļēāļ‡āđ€āļ„āļĄāļĩāļ„āļ·āļ­āđƒāļŠāđ‰āļ•āļąāļ§āļ—āļģāļĨāļ°āļĨāļēāļĒāļ—āļĩāđˆāđ€āļŦāļĄāļēāļ°āļŠāļĄāļĢāđˆāļ§āļĄāļāļąāļšāļāļēāļĢāļŠāļāļąāļ”āļ”āđ‰āļ§āļĒāļ§āļīāļ˜āļĩāļ—āļēāļ‡āļāļēāļĒāļ āļēāļž āđ„āļ”āđ‰āđāļāđˆ āļāļēāļĢāđ€āļ‚āļĒāđˆāļēāļ”āđ‰āļ§āļĒāđ€āļ„āļĢāļ·āđˆāļ­āļ‡āđ‚āļ‹āļ™āļīāđ€āļ„āđ€āļ•āļ­āļĢāđŒāđāļĨāļ°āļāļēāļĢāđ€āļ‹āđ‡āļ™āļ•āļĢāļīāļŸāļīāļ§āļˆāđŒ āļŠāļēāļĢāđ„āļšāđ‚āļ­āļˆāļĩāļ™āļīāļāđ€āļ­āļĄāļĩāļ™āđ€āļāļīāļ”āļˆāļēāļāļ›āļāļīāļāļīāļĢāļīāļĒāļēāļ”āļĩāļ„āļēāļĢāđŒāļšāļ­āļāļ‹āļīāđ€āļĨāļŠāļąāļ™āđ‚āļ”āļĒāļĄāļĩāļāļĢāļ”āļ­āļ°āļĄāļīāđ‚āļ™āļŠāļ™āļīāļ”āļ•āđˆāļēāļ‡āđ† āđ€āļ›āđ‡āļ™āļŠāļēāļĢāļ•āļąāđ‰āļ‡āļ•āđ‰āļ™ āļ‡āļēāļ™āļ§āļīāļˆāļąāļĒāļ™āļĩāđ‰āļĻāļķāļāļĐāļēāļāļēāļĢāļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāļŠāļēāļĢāđ„āļšāđ‚āļ­āļˆāļĩāļ™āļīāļāđ€āļ­āļĄāļĩāļ™āļ—āļąāđ‰āļ‡ 3 āļŠāļ™āļīāļ”āđƒāļ™āļ•āļąāļ§āļ­āļĒāđˆāļēāļ‡āđ„āļŠāđ‰āļāļĢāļ­āļ āđ‚āļ”āļĒāļ™āļģāļŠāļēāļĢāđ„āļšāđ‚āļ­āļˆāļĩāļ™āļīāļ āđ€āļ­āļĄāļĩāļ™āļ—āļąāđ‰āļ‡āļŠāļēāļĄāļĄāļēāļ—āļģāļ›āļāļīāļāļīāļĢāļīāļĒāļēāļāļąāļšāļŠāļēāļĢāļ­āļ­āļĢāđŒāđ‚āļ—-āļžāļ—āļēāļĨāđ„āļ”āļ­āļąāļĨāļ”āļĩāđ„āļŪāļ”āđŒāđƒāļ™āļŠāļēāļĢāļĨāļ°āļĨāļēāļĒ 0.4 M āļšāļ­āđ€āļĢāļ•āļšāļąāļŸāđ€āļŸāļ­āļĢāđŒ (pH 9.5) āļ—āļĩāđˆāļĄāļĩ 2-āđ€āļĄāļ­āļĢāđŒāđāļ„āļ›āđ‚āļ•āđ€āļ­āļ—āļēāļ™āļ­āļĨāļĢāļ§āļĄāļ­āļĒāļđāđˆāļ”āđ‰āļ§āļĒāļžāļšāļ§āđˆāļēāļŠāļēāļĢāļ­āļ™āļļāļžāļąāļ™āļ˜āđŒāļ—āļąāđ‰āļ‡ 3 āļŠāļēāļĄāļēāļĢāļ–āđ€āļāļīāļ”āļ›āļāļīāļāļīāļĢāļīāļĒāļēāļ­āļĒāđˆāļēāļ‡āļĢāļ§āļ”āđ€āļĢāđ‡āļ§āļ—āļĩāđˆāļ­āļļāļ“āļŦāļ āļđāļĄāļīāļŦāđ‰āļ­āļ‡ āļ—āļģāļāļēāļĢāđāļĒāļāļŠāļēāļĢāļ­āļ™āļļāļžāļąāļ™āļ˜āđŒāļ”āđ‰āļ§āļĒāđ€āļ—āļ„āļ™āļīāļ„āļĢāļĩāđ€āļ§āļīāļĢāđŒāļŠāđ€āļŸāļŠāđ‚āļ„āļĢāļĄāļēāđ‚āļ—āļāļĢāļēāļŸāļĩāļ‚āļ­āļ‡āđ€āļŦāļĨāļ§āļŠāļĄāļĢāļĢāļ–āļ™āļ°āļŠāļđāļ‡ āļ•āļĢāļ§āļˆāļ§āļąāļ”āļ”āđ‰āļ§āļĒāļŸāļĨāļđāļ­āļ­āļĢāđŒāđ€āļĢāļŠāđ€āļ‹āđ‡āļ™āļ•āđŒāļ—āļĩāđˆ Îŧex 335 nm āđāļĨāļ° Îŧem 460 nm āļˆāļēāļāļāļēāļĢāļĻāļķāļāļĐāļēāļŠāļ āļēāļ§āļ°āļ—āļĩāđˆāđ€āļŦāļĄāļēāļ°āļŠāļĄāļ•āđˆāļ­āļāļēāļĢāđāļĒāļāļŠāļēāļĢ āļœāļĨāļāļēāļĢāļĻāļķāļāļĐāļēāļžāļšāļ§āđˆāļēāļŠāļ āļēāļ§āļ°āļ—āļĩāđˆāđ€āļŦāļĄāļēāļ°āļŠāļĄ āđ„āļ”āđ‰āđāļāđˆ āļāļēāļĢāđƒāļŠāđ‰āļ§āļąāļāļ āļēāļ„āđ€āļ„āļĨāļ·āđˆāļ­āļ™āļ›āļĢāļ°āļāļ­āļšāļ”āđ‰āļ§āļĒ 100 mM  āđāļ­āļ‹āļīāđ€āļ•āļ•āļšāļąāļŸāđ€āļŸāļ­āļĢāđŒ (pH 5.8) : āļ­āļ°āļ‹āļīāđ‚āļ•āđ„āļ™āđ„āļ•āļĢāļ•āđŒāđƒāļ™āļ­āļąāļ•āļĢāļēāļŠāđˆāļ§āļ™ 81:19 v/v āļ­āļąāļ•āļĢāļēāļāļēāļĢāđ„āļŦāļĨ 1.1 ml/min āļŠāļēāļĢāļ­āļ™āļļāļžāļąāļ™āļ˜āđŒāļ”āļąāļ‡āļāļĨāđˆāļēāļ§āđāļŠāļ”āļ‡ āļ•āļģāđāļŦāļ™āđˆāļ‡āļžāļĩāļ„āļ‚āļ­āļ‡āļ­āļ™āļļāļžāļąāļ™āļ˜āđŒāļžāļīāļ§āđ€āļ—āļĢāļŠāļ‹āļĩāļ™ āļŪāļĩāļŠāļ•āļēāļĄāļĩāļ™ āđāļĨāļ°āļ„āļēāļĢāđŒāļ”āļēāđ€āļ§āļĢāļĩāļ™ āļ‹āļķāđˆāļ‡āļĄāļĩāļ„āđˆāļēāļĢāļ°āļĒāļ°āđ€āļ§āļĨāļēāļĢāļĩāđ€āļ—āļ™āļŠāļąāļ™āđ€āļ›āđ‡āļ™ 8.51, 11.33 āđāļĨāļ° 14.41 āļ™āļēāļ—āļĩ āļ•āļēāļĄāļĨāļģāļ”āļąāļš āļ™āļ­āļāļˆāļēāļāļ™āļĩāđ‰āđ„āļ”āđ‰āļĻāļķāļāļĐāļēāļŠāļēāļĢāļĨāļ°āļĨāļēāļĒāļ•āļąāļ§āļāļĨāļēāļ‡āļ„āļ·āļ­āđ‚āļ‹āđ€āļ”āļĩāļĒāļĄāđ„āļŪāļ”āļĢāļ­āļāđ„āļ‹āļ”āđŒ āđāļĨāļ°āđ€āļāļĨāļ·āļ­āđ‚āļ‹āđ€āļ”āļĩāļĒāļĄāļ„āļĨāļ­āđ„āļĢāļ”āđŒ āļžāļšāļ§āđˆāļēāļŠāļēāļĢāļ—āļąāđ‰āļ‡āļŠāļ­āļ‡āļĄāļĩāļœāļĨāļĨāļ”āļ„āđˆāļēāļ„āļ§āļēāļĄāđ€āļ‚āđ‰āļĄāļ‚āļ­āļ‡āļŠāļąāļāļāļēāļ“āđāļŠāļ‡āļŸāļĨāļđāļ­āļ­āđ€āļĢāļŠāđ€āļ‹āļ™āļ•āđŒ āđ€āļĄāļ·āđˆāļ­āļ™āļģāļ§āļīāļ˜āļĩāļ™āļĩāđ‰āđ„āļ›āđƒāļ™āļāļēāļĢāļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāļ›āļĢāļīāļĄāļēāļ“āļŪāļĩāļŠāļ•āļēāļĄāļĩāļ™ āļžāļīāļ§āđ€āļ—āļĢāļŠāļ‹āļĩāļ™ āđāļĨāļ°āļ„āļēāļĢāđŒāļ”āļēāđ€āļ§āļĢāļĩāļ™āđƒāļ™āļ•āļąāļ§āļ­āļĒāđˆāļēāļ‡āđ„āļŠāđ‰āļāļĢāļ­āļāļžāļ·āđ‰āļ™āđ€āļĄāļ·āļ­āļ‡āđ„āļ—āļĒ āļžāļšāļ§āđˆāļēāļŠāļēāļĄāļēāļĢāļ–āļ•āļĢāļ§āļˆāļžāļšāļŠāļēāļĢāđ„āļšāđ‚āļ­āļˆāļĩāļ™āļīāļāđ€āļ­āļĄāļĩāļ™āļ—āļąāđ‰āļ‡āļŠāļēāļĄāļŠāļ™āļīāļ”āđ‚āļ”āļĒāļžāļš āļŪāļĩāļŠāļ•āļēāļĄāļĩāļ™ 2-35 ppm āļžāļīāļ§āđ€āļ—āļĢāļŠāļ‹āļĩāļ™ 10-50 ppm āđāļĨāļ°āļ„āļēāļĢāđŒāļ”āļēāđ€āļ§āļĢāļĩāļ™ 2-3 ppmāļ„āļģāļŠāļģāļ„āļąāļ: āđ„āļšāđ‚āļ­āļˆāļĩāļ™āļīāļāđ€āļ­āļĄāļĩāļ™ āļŪāļĩāļŠāļ•āļēāļĄāļĩāļ™ āļžāļīāļ§āđ€āļ—āļĢāļŠāļ‹āļĩāļ™ āļ„āļēāļĢāđŒāļ”āļēāđ€āļ§āļĢāļĩāļ™ āļ­āļ­āļĢāđŒāđ‚āļ—-āļžāļ—āļēāļĨāđ„āļ”āļ­āļąāļĨāļ”āļĩāđ„āļŪāļ”āđŒBiogenic amine is a substance that synthesis from decarboxylation reaction of precursors amino acids. Histamine, putrescine and cadaverine are important biogenic amines which were found in many foods especially in food containing rich protein. This research work focused on analysis of those 3 biogenic amines in thai traditional sausages as E-sarn sausage, Mum sausage and Sai-owe Sausage. The three biogenic amines were extracted from sausage samples by borate buffer (pH 9.5) with ultrasonication and centrifugation. Then the biogenic amines were pre-derivetised with O-phthaldialdehyde (OPA) in borate buffer pH 9.5 containing 2-mercaptoethanol and analysed by reverse phase high performance liquid chromatography (RP-HPLC) with fluorescent detection at Îŧem 460 nm. The optimization condition in analysis was also studied. The best mobile system of 100 mM acetate buffer (pH 5.8) : acetonitrite was 81 : 19 v/v with flow rate at 1.1 ml/min giving good separation. The derivertised products of putrescine, histamine and cadaverine were eluted at the retention time 8.51, 11.33 and 14.41 min. respectively. The sodium hydroxide and sodium chloride solutions effect on the fluorescence intensity of derivertised products. Application of this method to analyse 3 biogenic amines in Thai traditional sasuages revealed the present amount of histamine, putrescine and cadaverine at 2-35, 10-50 and 2-3 ppm, respectively.Keywords: Biogenic amine, Histamine, Putrescine, Cadaverine, O-phthaldialdehyd

    Transparent Cross-Flow Platform as Chemiluminescence Detection Cell in Cross Injection Analysis

    No full text
    This work presents the use of a transparent ‘Cross Injection Analysis’ (CIA) platform as a flow system for chemiluminescence (CL) measurements. The CL-CIA flow device incorporates introduction channels for samples and reagents, and the reaction and detection channels are in one acrylic unit. A photomultiplier tube placed above the reaction channel detects the emitted luminescence. The system was applied to the analysis of (i) Co(II) via the Co(II)-catalyzed H2O2-luminol reaction and (ii) paracetamol via its inhibitory effect on the catalytic activity of Fe(CN)63− on the H2O2-luminol reaction. A linear calibration was obtained for Co(II) in the range of 0.002 to 0.025 mg L−1 Co(II) (r2 = 0.9977) for the determination of Co(II) in water samples. The linear calibration obtained for the paracetamol was 10 to 200 mg L−1 (r2 = 0.9906) for the determination of pharmaceutical products. The sample throughput was 60 samples h−1. The precision was â‰Ī4.2% RSD. The consumption of the samples and reagents was ca. 170 ÂĩL per analysis cycle

    Membraneless Gas-Separation Microfluidic Paper-Based Analytical Devices for Direct Quantitation of Volatile and Nonvolatile Compounds

    No full text
    This work presents new chemical sensing devices called “membraneless gas-separation microfluidic paper-based analytical devices” (MBL-GS ξPADs). MBL-GS ξPADs were designed to make fabrication of the devices simple and user-friendly. MBL-GS ξPADs offer direct quantitative analysis of volatile and nonvolatile compounds. Porous hydrophobic membrane is not needed for gas-separation, which makes fabrication of the device simple, rapid and low-cost. A MBL-GS ξPAD consists of three layers: “donor layer”, “spacer layer”, and “acceptor layer”. The donor and acceptor layers are made of filter paper with a printed pattern. The donor and acceptor layers are mounted together with a spacer layer in between. This spacer is a two-sided mounting tape, 0.8 mm thick, with a small disc cut out for the gas from the donor zone to diffuse to the acceptor zone. Photographic image of the color that is formed by the reagent in the acceptor layer is analyzed using the ImageJ program for quantitation. Proof of concept of the MBL-GS ξPADs was demonstrated by analyzing standard solutions of ethanol, sulfide, and ammonium. Optimization of the MBL-GS ξPADs was carried out for direct determination of ammonium in wastewaters and fertilizers to demonstrate the applicability of the system to real samples
    corecore