27 research outputs found

    Critical mass and the dependency of research quality on group size

    Full text link
    Academic research groups are treated as complex systems and their cooperative behaviour is analysed from a mathematical and statistical viewpoint. Contrary to the naive expectation that the quality of a research group is simply given by the mean calibre of its individual scientists, we show that intra-group interactions play a dominant role. Our model manifests phenomena akin to phase transitions which are brought about by these interactions, and which facilitate the quantification of the notion of critical mass for research groups. We present these critical masses for many academic areas. A consequence of our analysis is that overall research performance of a given discipline is improved by supporting medium-sized groups over large ones, while small groups must strive to achieve critical mass.Comment: 16 pages, 6 figures consisting of 16 panels. Presentation and reference list improved for version

    Monte Carlo study of the evaporation/condensation transition on different Ising lattices

    Full text link
    In 2002 Biskup et al. [Europhys. Lett. 60, 21 (2002)] sketched a rigorous proof for the behavior of the 2D Ising lattice gas, at a finite volume and a fixed excess \delta M of particles (spins) above the ambient gas density (spontaneous magnetisation). By identifying a dimensionless parameter \Delta (\delta M) and a universal constant \Delta_c, they showed in the limit of large system sizes that for \Delta < \Delta_c the excess is absorbed in the background (``evaporated'' system), while for \Delta > \Delta_c a droplet of the dense phase occurs (``condensed'' system). To check the applicability of the analytical results to much smaller, practically accessible system sizes, we performed several Monte Carlo simulations for the 2D Ising model with nearest-neighbour couplings on a square lattice at fixed magnetisation M. Thereby, we measured the largest minority droplet, corresponding to the condensed phase, at various system sizes (L=40, >..., 640). With analytic values for for the spontaneous magnetisation m_0, the susceptibility \chi and the Wulff interfacial free energy density \tau_W for the infinite system, we were able to determine \lambda numerically in very good agreement with the theoretical prediction. Furthermore, we did simulations for the spin-1/2 Ising model on a triangular lattice and with next-nearest-neighbour couplings on a square lattice. Again, finding a very good agreement with the analytic formula, we demonstrate the universal aspects of the theory with respect to the underlying lattice. For the case of the next-nearest-neighbour model, where \tau_W is unknown analytically, we present different methods to obtain it numerically by fitting to the distribution of the magnetisation density P(m).Comment: 14 pages, 17 figures, 1 tabl

    Wenn schnell entschieden werden muss - die neugegründete Cochrane Methodengruppe Rapid Reviews stellt sich vor

    No full text

    Screening auf asymptomatische Bakteriurie bei Schwangeren - ist die aktuelle Praxis noch zeitgemäß?

    No full text

    Der "Wissen Was Wirkt"-Blog: Laienverständlicher Zugang zu Cochrane Evidenz

    No full text
    corecore