5 research outputs found

    Hitting the right note at the right time: Circadian control of audibility in Anopheles mosquito mating swarms is mediated by flight tones

    Get PDF
    Mating swarms of malaria mosquitoes form every day at sunset throughout the tropical world. They typically last less than 30 minutes. Activity must thus be highly synchronized between the sexes. Moreover, males must identify the few sporadically entering females by detecting the females’ faint flight tones. We show that the Anopheles circadian clock not only ensures a tight synchrony of male and female activity but also helps sharpen the males’ acoustic detection system: By raising their flight tones to 1.5 times the female flight tone, males enhance the audibility of females, specifically at swarm time. Previously reported “harmonic convergence” events are only a random by-product of the mosquitoes’ flight tone variance and not a signature of acoustic interaction between males and females. The flight tones of individual mosquitoes occupy narrow, partly non-overlapping frequency ranges, suggesting that the audibility of individual females varies across males

    CDC light traps underestimate the protective efficacy of an indoor spatial repellent against bites from wild Anopheles arabiensis mosquitoes in Tanzania

    Get PDF
    BACKGROUND: Methods for evaluating efficacy of core malaria interventions in experimental and operational settings are well established but gaps exist for spatial repellents (SR). The objective of this study was to compare three different techniques: (1) collection of blood-fed mosquitoes (feeding), (2) human landing catch (HLC), and (3) CDC light trap (CDC-LT) collections for measuring the indoor protective efficacy (PE) of the volatile pyrethroid SR product Mosquito Shield() METHODS: The PE of Mosquito Shield() against a wild population of pyrethroid-resistant Anopheles arabiensis mosquitoes was determined via feeding, HLC, or CDC-LT using four simultaneous 3 by 3 Latin squares (LS) run using 12 experimental huts in Tanzania. On any given night each technique was assigned to two huts with control and two huts with treatment. The LS were run twice over 18 nights to give a sample size of 72 replicates for each technique. Data were analysed by negative binomial regression. RESULTS: The PE of Mosquito Shield() measured as feeding inhibition was 84% (95% confidence interval (CI) 58-94% [Incidence Rate Ratio (IRR) 0.16 (0.06-0.42), p < 0.001]; landing inhibition 77% [64-86%, (IRR 0.23 (0.14-0.36) p < 0.001]; and reduction in numbers collected by CDC-LT 30% (0-56%) [IRR 0.70 (0.44-1.0) p = 0.160]. Analysis of the agreement of the PE measured by each technique relative to HLC indicated no statistical difference in PE measured by feeding inhibition and landing inhibition [IRR 0.73 (0.25-2.12) p = 0.568], but a significant difference in PE measured by CDC-LT and landing inhibition [IRR 3.13 (1.57-6.26) p = 0.001]. CONCLUSION: HLC gave a similar estimate of PE of Mosquito Shield() against An. arabiensis mosquitoes when compared to measuring blood-feeding directly, while CDC-LT underestimated PE relative to the other techniques. The results of this study indicate that CDC-LT could not effectively estimate PE of the indoor spatial repellent in this setting. It is critical to first evaluate the use of CDC-LT (and other tools) in local settings prior to their use in entomological studies when evaluating the impact of indoor SR to ensure that they reflect the true PE of the intervention

    Influence of testing modality on bioefficacy for the evaluation of Interceptor® G2 mosquito nets to combat malaria mosquitoes in Tanzania.

    Get PDF
    BACKGROUND: Insecticide-treated net (ITN) durability is evaluated using longitudinal bioefficacy and fabric integrity sampling post-distribution. Interceptor® G2 was developed for resistance management and contains two adulticides: alpha-cypermethrin and chlorfenapyr; it is a pro-insecticide that is metabolized into its active form by mosquito-detoxifying enzymes and may be enhanced when the mosquito is physiologically active. To elucidate the impact of bioassay modality, mosquito exposures of the alphacypermethrin ITN Interceptor® and dual adulticide Interceptor® G2 were investigated. METHODS: This study evaluated the performance of Interceptor® G2 compared to Interceptor® against local strains of mosquitoes in Tanzania. Unwashed and 20× times washed nets were tested. Efficacy of ITNs was measured by four bioassay types: (1) World Health Organisation (WHO) cone test (cone), (2) WHO tunnel test (tunnel), (3) Ifakara ambient chamber test (I-ACT) and (4) the WHO gold standard experimental hut test (hut). Hut tests were conducted against free-flying wild pyrethroid metabolically resistant Anopheles arabiensis and Culex quinquefasciatus. Cone, tunnel and I-ACT bioassays used laboratory-reared metabolically resistant An. arabiensis and Cx. quinquefasciatus and pyrethroid susceptible Anopheles gambiae sensu stricto and Aedes aegypti. RESULTS: Against resistant strains, superiority of Interceptor® G2 over Interceptor® was observed in all "free-flying bioassays". In cone tests (which restrict mosquito flight), superiority of Interceptor® over Interceptor® G2 was recorded. Mortality of unwashed Interceptor® G2 among An. arabiensis was lowest in hut tests at 42.9% (95% CI: 37.3-48.5), although this increased to 66.7% (95% CI: 47.1-86.3) by blocking hut exit traps so mosquitoes presumably increased frequencies of contact with ITNs. Higher odds of mortality were consistently observed in Interceptor® G2 compared to Interceptor® in "free-flying" bioassays using An. arabiensis: tunnel (OR = 1.42 [95% CI:1.19-1.70], p < 0.001), I-ACT (OR = 1.61 [95% CI: 1.05-2.49], p = 0.031) and hut (OR = 2.53 [95% CI: 1.96-3.26], p < 0.001). Interceptor® and Interceptor® G2 showed high blood-feeding inhibition against all strains. CONCLUSION: Both free-flying laboratory bioassays (WHO Tunnel and I-ACT) consistently measured similarly, and both predicted the results of the experimental hut test. For bioefficacy monitoring and upstream product evaluation of ITNs in situ, the I-ACT may provide an alternative bioassay modality with improved statistical power. Interceptor G2® outperformed Interceptor ® against pyrethroid-resistant strains, demonstrating the usefulness of chlorfenapyr in mitigation of malaria
    corecore