9 research outputs found

    Atypical Neurogenesis in Induced Pluripotent Stem Cells From Autistic Individuals

    Get PDF
    BACKGROUND: Autism is a heterogeneous collection of disorders with a complex molecular underpinning. Evidence from postmortem brain studies have indicated that early prenatal development may be altered in autism. Induced pluripotent stem cells (iPSCs) generated from individuals with autism with macrocephaly also indicate prenatal development as a critical period for this condition. But little is known about early altered cellular events during prenatal stages in autism. METHODS: iPSCs were generated from 9 unrelated individuals with autism without macrocephaly and with heterogeneous genetic backgrounds, and 6 typically developing control individuals. iPSCs were differentiated toward either cortical or midbrain fates. Gene expression and high throughput cellular phenotyping was used to characterize iPSCs at different stages of differentiation. RESULTS: A subset of autism-iPSC cortical neurons were RNA-sequenced to reveal autism-specific signatures similar to postmortem brain studies, indicating a potential common biological mechanism. Autism-iPSCs differentiated toward a cortical fate displayed impairments in the ability to self-form into neural rosettes. In addition, autism-iPSCs demonstrated significant differences in rate of cell type assignment of cortical precursors and dorsal and ventral forebrain precursors. These cellular phenotypes occurred in the absence of alterations in cell proliferation during cortical differentiation, differing from previous studies. Acquisition of cell fate during midbrain differentiation was not different between control- and autism-iPSCs. CONCLUSIONS: Taken together, our data indicate that autism-iPSCs diverge from control-iPSCs at a cellular level during early stage of neurodevelopment. This suggests that unique developmental differences associated with autism may be established at early prenatal stages

    Clusterin Is Required for β-Amyloid Toxicity in Human iPSC-Derived Neurons

    Get PDF
    Our understanding of the molecular processes underlying Alzheimer’s disease (AD) is still limited, hindering the development of effective treatments, and highlighting the need for human-specific models. Advances in identifying components of the amyloid cascade are progressing, including the role of the protein clusterin in mediating β-amyloid (Aβ) toxicity. Mutations in the clusterin gene (CLU), a major genetic AD risk factor, are known to have important roles in Aβ processing. Here we investigate how CLU mediates Aβ-driven neurodegeneration in human induced pluripotent stem cell (iPSC)-derived neurons. We generated a novel CLU-knockout iPSC line by CRISPR/Cas9-mediated gene editing to investigate Aβ-mediated neurodegeneration in cortical neurons differentiated from wild type and CLU knockout iPSCs. We measured response to Aβ using an imaging assay and measured changes in gene expression using qPCR and RNA sequencing. In wild type neurons imaging indicated that neuronal processes degenerate following treatment with Aβ25-35 peptides and Aβ1-42 oligomers, in a dose dependent manner, and that intracellular levels of clusterin are increased following Aβ treatment. However, in CLU knockout neurons Aβ exposure did not affect neurite length, suggesting that clusterin is an important component of the amyloid cascade. Transcriptomic data were analyzed to elucidate the pathways responsible for the altered response to Aβ in neurons with the CLU deletion. Four of the five genes previously identified as downstream to Aβ and Dickkopf-1 (DKK1) proteins in an Aβ-driven neurotoxic pathway in rodent cells were also dysregulated in human neurons with the CLU deletion. AD and lysosome pathways were the most significantly dysregulated pathways in the CLU knockout neurons, and pathways relating to cytoskeletal processes were most dysregulated in Aβ treated neurons. The absence of neurodegeneration in the CLU knockout neurons in response to Aβ compared to the wild type neurons supports the role of clusterin in Aβ-mediated AD pathogenesis

    Clusterin is required for β-Amyloid toxicity in human iPSC-derived neurons

    No full text
    Our understanding of the molecular processes underlying Alzheimer's disease (AD) is still limited, hindering the development of effective treatments, and highlighting the need for human-specific models. Advances in identifying components of the amyloid cascade are progressing, including the role of the protein clusterin in mediating β-amyloid (Aβ) toxicity. Mutations in the clusterin gene (CLU), a major genetic AD risk factor, are known to have important roles in Aβ processing. Here we investigate how CLU mediates Aβ-driven neurodegeneration in human induced pluripotent stem cell (iPSC)-derived neurons. We generated a novel CLU-knockout iPSC line by CRISPR/Cas9-mediated gene editing to investigate Aβ-mediated neurodegeneration in cortical neurons differentiated from wild type and CLU knockout iPSCs. We measured response to Aβ using an imaging assay and measured changes in gene expression using qPCR and RNA sequencing. In wild type neurons imaging indicated that neuronal processes degenerate following treatment with Aβ25-35 peptides and Aβ1-42 oligomers, in a dose dependent manner, and that intracellular levels of clusterin are increased following Aβ treatment. However, in CLU knockout neurons Aβ exposure did not affect neurite length, suggesting that clusterin is an important component of the amyloid cascade. Transcriptomic data were analyzed to elucidate the pathways responsible for the altered response to Aβ in neurons with the CLU deletion. Four of the five genes previously identified as downstream to Aβ and Dickkopf-1 (DKK1) proteins in an Aβ-driven neurotoxic pathway in rodent cells were also dysregulated in human neurons with the CLU deletion. AD and lysosome pathways were the most significantly dysregulated pathways in the CLU knockout neurons, and pathways relating to cytoskeletal processes were most dysregulated in Aβ treated neurons. The absence of neurodegeneration in the CLU knockout neurons in response to Aβ compared to the wild type neurons supports the role of clusterin in Aβ-mediated AD pathogenesis

    Atypical Neurogenesis in Induced Pluripotent Stem Cells From Autistic Individuals.

    Get PDF
    BACKGROUND: Autism is a heterogeneous collection of disorders with a complex molecular underpinning. Evidence from postmortem brain studies have indicated that early prenatal development may be altered in autism. Induced pluripotent stem cells (iPSCs) generated from individuals with autism with macrocephaly also indicate prenatal development as a critical period for this condition. But little is known about early altered cellular events during prenatal stages in autism. METHODS: iPSCs were generated from 9 unrelated individuals with autism without macrocephaly and with heterogeneous genetic backgrounds, and 6 typically developing control individuals. iPSCs were differentiated toward either cortical or midbrain fates. Gene expression and high throughput cellular phenotyping was used to characterize iPSCs at different stages of differentiation. RESULTS: A subset of autism-iPSC cortical neurons were RNA-sequenced to reveal autism-specific signatures similar to postmortem brain studies, indicating a potential common biological mechanism. Autism-iPSCs differentiated toward a cortical fate displayed impairments in the ability to self-form into neural rosettes. In addition, autism-iPSCs demonstrated significant differences in rate of cell type assignment of cortical precursors and dorsal and ventral forebrain precursors. These cellular phenotypes occurred in the absence of alterations in cell proliferation during cortical differentiation, differing from previous studies. Acquisition of cell fate during midbrain differentiation was not different between control- and autism-iPSCs. CONCLUSIONS: Taken together, our data indicate that autism-iPSCs diverge from control-iPSCs at a cellular level during early stage of neurodevelopment. This suggests that unique developmental differences associated with autism may be established at early prenatal stages

    Data_Sheet_1_Clusterin Is Required for β-Amyloid Toxicity in Human iPSC-Derived Neurons.docx

    No full text
    <p>Our understanding of the molecular processes underlying Alzheimer’s disease (AD) is still limited, hindering the development of effective treatments, and highlighting the need for human-specific models. Advances in identifying components of the amyloid cascade are progressing, including the role of the protein clusterin in mediating β-amyloid (Aβ) toxicity. Mutations in the clusterin gene (CLU), a major genetic AD risk factor, are known to have important roles in Aβ processing. Here we investigate how CLU mediates Aβ-driven neurodegeneration in human induced pluripotent stem cell (iPSC)-derived neurons. We generated a novel CLU-knockout iPSC line by CRISPR/Cas9-mediated gene editing to investigate Aβ-mediated neurodegeneration in cortical neurons differentiated from wild type and CLU knockout iPSCs. We measured response to Aβ using an imaging assay and measured changes in gene expression using qPCR and RNA sequencing. In wild type neurons imaging indicated that neuronal processes degenerate following treatment with Aβ<sub>25-35</sub> peptides and Aβ<sub>1-42</sub> oligomers, in a dose dependent manner, and that intracellular levels of clusterin are increased following Aβ treatment. However, in CLU knockout neurons Aβ exposure did not affect neurite length, suggesting that clusterin is an important component of the amyloid cascade. Transcriptomic data were analyzed to elucidate the pathways responsible for the altered response to Aβ in neurons with the CLU deletion. Four of the five genes previously identified as downstream to Aβ and Dickkopf-1 (DKK1) proteins in an Aβ-driven neurotoxic pathway in rodent cells were also dysregulated in human neurons with the CLU deletion. AD and lysosome pathways were the most significantly dysregulated pathways in the CLU knockout neurons, and pathways relating to cytoskeletal processes were most dysregulated in Aβ treated neurons. The absence of neurodegeneration in the CLU knockout neurons in response to Aβ compared to the wild type neurons supports the role of clusterin in Aβ-mediated AD pathogenesis.</p
    corecore