119 research outputs found

    Transfer/Breakup Modes in the 6He+209Bi Reaction Near and Below the Coulomb Barrier

    Full text link
    Reaction products from the interaction of 6He with 209Bi have been measured at energies near the Coulomb barrier. A 4He group of remarkable intensity, which dominates the total reaction cross section, has been observed. The angular distribution of the group suggests that it results primarily from a direct nuclear process. It is likely that this transfer/breakup channel is the doorway state that accounts for the previously observed large sub-barrier fusion enhancement in this system.Comment: 4 pages; 3 figure

    Alpha Particle Emission from6He + 209Bi

    Get PDF
    In a recent experiment, we have for the first time studied near-barrier and sub-barrier fusion of the exotic Borromean nucleus 6He with 209Bi and found that the sub-barrier fusion of this system is exceptionally enhanced, implying a 20% reduction in the nominal fusion barrier. It was suggested that this striking effect might he due to coupling to positive Q-value neutron transfer channels, leading to neutron flow and consequent neck formation between the projectile and target. The results of a new experiment using the radioactive nuclear beam facility at the University of Notre Dame to measure fast ⍺-particle emission from 6He + 209Bi are discussed. A exceptional1y strong transfer/breakup group was observed at near-barrier and sub-barrier energies; this is very likely to be the doorway state that explains the enhanced sub-barrier fusion. In a recent experiment, we have for the first time studied near-barrier and sub-barrier fusion of the exotic Borromean nucleus 6He with 209Bi and found that the sub-barrier fusion of this system is exceptionally enhanced, implying a 20% reduction in the nominal fusion barrier. It was suggested that this striking effect might he due to coupling to positive Q-value neutron transfer channels, leading to neutron flow and consequent neck formation between the projectile and target. The results of a new experiment using the radioactive nuclear beam facility at the University of Notre Dame to measure fast ⍺-particle emission from 6He + 209Bi are discussed. A exceptional1y strong transfer/breakup group was observed at near-barrier and sub-barrier energies; this is very likely to be the doorway state that explains the enhanced sub-barrier fusion

    Eating disorders: from twin studies to candidate genes and beyond

    Get PDF
    Substantial effort has been put into the exploration of the biological background of eating disorders, through family, twin and molecular genetic studies. Family studies have shown that anorexia (AN) and bulimia nervosa (BN) are strongly familial, and that familial etiologic factors appear to be shared by both disorders. Twin studies often focus on broader phenotypes or subthreshold eating disorders. These studies consistently yielded moderate to substantial heritabilities. In addition, there has been a proliferation of molecular genetic studies that focused on Diagnostic and Statistical Manual of Mental Disorders (4th ed.; DSM-IV; American Psychiatric Association, 1994) AN and BN. Seven linkage regions have been identified in genome-wide screens. Many genetic association studies have been performed, but no consistent association between a candidate gene and AN or BN has been reported. Larger genetic association studies and collaborations are needed to examine the involvement of several candidate genes and biological pathways in eating disorders. In addition, twin studies should be designed to assist the molecular work by further exploring genetic determinants of endophenotypes, evaluating the magnitude of contribution to liability of measured genotypes as well as environmental risk factors related to eating disorders. In this manner twin and molecular studies can move the field forward in a mutually informative way

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Perivascular macrophages in health and disease

    Get PDF
    Macrophages are a heterogeneous group of cells that are capable of carrying out distinct functions in different tissues, as well as in different locations within a given tissue. Some of these tissue macrophages lie on, or close to, the outer (abluminal) surface of blood vessels and perform several crucial activities at this interface between the tissue and the blood. In steady-state tissues, these perivascular macrophages maintain tight junctions between endothelial cells and limit vessel permeability, phagocytose potential pathogens before they enter tissues from the blood and restrict inappropriate inflammation. They also have a multifaceted role in diseases such as cancer, Alzheimer disease, multiple sclerosis and type 1 diabetes. Here, we examine the important functions of perivascular macrophages in various adult tissues and describe how these functions are perturbed in a broad array of pathological conditions

    Bio-mimicking nano and micro-structured surface fabrication for antibacterial properties in medical implants

    Full text link

    Ocean/ice shelf interaction in the southern Weddell Sea: results of a regional numerical helium/neon simulation

    Get PDF
    Ocean/ice interaction at the base of deep drafted Antarctic ice shelves modifies the physical properties of inflowing shelf waters to become Ice Shelf Water (ISW).In contrast to the conditions at the atmosphere/ocean interface, the increased hydrostaticpressure at the glacial base causes gases embedded in the ice to solve completely after being released by melting. Helium and neon with an extremely low solubility are supersatured in glacial meltwater by more than 1000%. At the continentalslope in front of the large Antarctic caverns ISW mixes with ambient waters toform different precursors of Antarctic Bottom Water. A regional ocean circulation model is presented which uses an explicit formulation of the ocean/ice shelf interaction to describe for the first time the input of noble gases to the Southern Ocean. The results reveal a long-term variability of the basal mass loss solely controlled by the interaction between waters of the continental shelf and the ice shelf cavern. Modeled helium and neon supersaturations from the Filchner-Ronne Ice Shelf front reveal a "low-pass" filtering of the inflowing signal due to cavern processes. On circumpolar scales the helium and neon distributions in the Southern Ocean quantify the ISW contribution to bottom water which spreads with the coastal current connecting the major formation sites in Ross and Weddell Seas

    On the influence of adequate Weddell Sea characteristics in a large-scale global ocean circulation model

    Get PDF
    Global ocean circulation models usually lack an adequate consideration of high-latitude processes due to a limited model domain or insufficient resolution. Without the processes in key areas of the global thermohaline circulation, the characteristics and flow of deep and bottom waters cannot be modeled realistically. In this study, a high-resolution (~20 km) ocean model focused on the Weddell Sea sector of the Southern Ocean is combined with a low-resolution (2°× 2°) global ocean model applying the state estimation technique. Temperature, salinity, and velocity data on two Weddell Sea sections from the regional model are used as constraints for the large-scale model in addition to satellite altimetry and sea-surface temperatures. The differences between the model with additional constraints and without document that the Weddell Sea circulation exerts significant influence on the course of the Antarctic Circumpolar Current with consequences for Southern Ocean water mass characteristics and the spreading of deep and bottom waters in the South Atlantic. Furthermore, a warming trend in the period 19932001 was found in the Weddell Sea and adjacent basins in agreement with float measurements in the upper Southern Ocean. Teleconnections to the North Atlantic are suggested but need further studies to demonstrate their statistical significance
    corecore