7 research outputs found

    Leishmania amazonensis induces modulation of costimulatory and surface marker molecules in human macrophages

    No full text
    FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQManipulation of costimulatory and surface molecules that shape the extent of immune responses by Leishmania is suggested as one of the mechanisms of evading the host's defences. The experiments reported here were designed to evaluate the expressions of CD40415FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQ2013/01536- 1, 2015/23767470724/2013- 7This work was supported by grants from the National Council for Scientific and Technological Development (CNPq) (2013/01536- 1), and the São Paulo Research Foundation (FAPESP) (470724/2013- 7

    Multitarget effects of quercetin in leukemia

    No full text
    This study proposes to investigate quercetin antitumor efficacy in vitro and in vivo, using the P39 cell line as a model. The experimental design comprised leukemic cells or xenografts of P39 cells, treated in vitro or in vivo, respectively, with quercetin; apoptosis, cell-cycle and autophagy activation were then evaluated. Quercetin caused pronounced apoptosis in P39 leukemia cells, followed by Bcl-2, Bcl-xL, Mcl-1 downregulation, Bax upregulation, and mitochondrial translocation, triggering cytochrome c release and caspases activation. Quercetin also induced the expression of FasL protein. Furthermore, our results demonstrated an antioxidant activity of quercetin. Quercetin treatment resulted in an increased cell arrest in G1 phase of the cell cycle, with pronounced decrease in CDK2, CDK6, cyclin D, cyclin E, and cyclin A proteins, decreased Rb phosphorylation and increased p21 and p27 expression. Quercetin induced autophagosome formation in the P39 cell line. Autophagy inhibition induced by quercetin with chloroquine triggered apoptosis but did not alter quercetin modulation in the G1 phase. P39 cell treatment with a combination of quercetin and selective inhibitors of ERK1/2 and/or JNK (PD184352 or SP600125, respectively), significantly decreased cells in G1 phase, this treatment, however, did not change the apoptotic cell number. Furthermore, in vivo administration of quercetin significantly reduced tumor volume in P39 xenografts and confirmed in vitro results regarding apoptosis, autophagy, and cell-cycle arrest. The antitumor activity of quercetin both in vitro and in vivo revealed in this study, point to quercetin as an attractive antitumor agent for hematologic malignancies.This study proposes to investigate quercetin antitumor efficacy in vitro and in vivo, using the P39 cell line as a model. The experimental design comprised leukemic cells or xenografts of P39 cells, treated in vitro or in vivo, respectively, with querceti71212401250sem informaçãosem informaçã

    Antifungal And Cytotoxic 2-acylcyclohexane-1,3-diones From Peperomia Alata And P. Trineura

    No full text
    Bioactivity-guided fractionation of the separate CH2Cl 2 extracts from the aerial parts of Peperomia alata and P. trineura yielded seven polyketides: alatanone A [3-hydroxy-2-(5′-phenylpent- 4′E-enoyl)cyclohex-2-en-1-one, 1a] and alatanone B [3-hydroxy-2-(3′- phenyl-6′-methylenedioxypropanoyl)cyclohex-2-en-1-one, 2a] from P. alata and trineurone A [3-hydroxy-2-(11′-phenylundec-10′E-enoyl)cyclohex- 2-en-1-one, 1b], trineurone B [3-hydroxy-2-(15′-phenyl-18′- methylenedioxypentadecanoyl)cyclohex-2-en-1-one, 2b], trineurone C [3-hydroxy-2-(17′-phenyl-20′-methylenedioxyheptadecanoyl) cyclohex-2-en-1-one, 2c], trineurone D [3-hydroxy-2-(hexadec-10′Z-enoyl) cyclohex-2-en-1-one, 3a], and trineurone E [(6R)-(+)-3,6-dihydroxy-2-(hexadec- 10′Z-enoyl)cyclohex-2-en-1-one, 3b] from P. trineura. The isolated compounds were evaluated for antifungal activity against Cladosporium cladosporioides and C. sphaeospermum and for cytotoxicity against the K562 and Nalm-6 leukemia cell lines. © 2014 The American Chemical Society and American Society of Pharmacognosy.77613771382Jaramillo, M.A., Manos, P.S., Zimmer, E.A., (2004) Int. J. Plant Sci., 165, pp. 403-416Wanke, S., Samain, M.S., Vanderschaeve, L., Mathieu, G., Goetghebeur, P., Neinhuis, C., (2006) Plant Biol., 8, pp. 93-102Salazar, K.J.M., Delgado, P.G.E., Luncor, L.R., Young, M.C.M., Kato, M.J., (2005) Phytochemistry, 66, pp. 573-579Seeram, N.P., Jacobs, H., McLean, S., Reynolds, W.F., (1998) Phytochemistry, 49, pp. 1389-1391Tanaka, T., Asai, F., Linuma, M., (1998) Phytochemistry, 49, pp. 229-232Mbah, J.A., Tchuendem, M.H.K., Tane, P., Sterner, O., (2002) Phytochemistry, 60, pp. 799-801Bayma, J.C., Arruda, M.S.P., Müller, A.H., Arruda, A.C., Canto, W.C., (2000) Phytochemistry, 55, pp. 779-782Govindachari, T.R., Kumari, G.N.K., Partho, P.D., (1998) Phytochemistry, 49, pp. 2129-2131Monache, F.D., Compagnone, R.S., (1996) Phytochemistry, 43, pp. 1097-1098Xu, S., Li, N., Ning, M.M., Zhou, C.H., Yang, Q.R., Wang, M.W., (2006) J. Nat. Prod., 69, pp. 247-250Wu, J., Li, N., Hasegawa, T., Sakai, J., Kakuta, S., Tang, W., Oka, S., Ando, M., (2005) J. Nat. Prod., 68, pp. 1656-1660Mahiou, V., Roblot, F., Hocquemiller, R., Cave, A., Rojas Arias, A., Inchausti, A., Yaluff, G., Fournet, A., (1996) J. Nat. Prod., 59, pp. 694-697Soares, M.G., Felippe, A.P.V., Guimarães, E.F., Kato, M.J., Ellena, J., Doriguetto, A.C., (2006) J. Braz. Chem. Soc., 17, pp. 1205-1210Li, N., Wu, J.L., Hasegawa, T., Sakai, J., Bai, L.M., Wang, L.Y., Kakuta, S., Ando, M., (2007) J. Nat. Prod., 70, pp. 998-1001Lago, J.H.G., Oliveira, A., Guimarães, E.F., Kato, M.J., (2007) J. Braz. Chem. Soc., 18, pp. 638-642Kato, M.J., Yoshida, M., Gottlieb, O.R., (1990) Phytochemistry, 29, pp. 1799-1810Nemoto, T., Masao, S., Kuwahara, Y., Takahisa, S., (1987) Agric. Biol. Chem., 51, pp. 1805-1810Mudd, A., (1983) J. Chem. Soc., 1, pp. 2161-2164Kuwahara, Y., Nemoto, T., Shibuya, M., Matsura, H., Shiraiwa, Y., (1983) Agric. Biol. Chem., 47, pp. 1929-1931Li, N., Hasegawa, T., Sakai, J.-I., Kakuta, S., Tang, W., Oka, S., Kiuchi, M., Ando, M., (2005) J. Nat. Prod., 68, pp. 1656-1660Denny, C., Zacharias, M.E., Ruiz, A.L.T.G., Amaral, M.C.E., Bittrich, V., Kohn, L.K., Sousa, I.M.O., Foglio, M.A., (2008) Phytother. Res., 22, pp. 127-130Wang, Q.-W., Yu, D.-H., Lin, M.-G., Zhao, M., Zhu, W.-J., Lu, Q., Li, G.-X., Yang, G.-H., (2012) Molecules, 17, pp. 4474-4483Moreira, D.L., Souza, P.O., Kaplan, M.A.C., Guimarães, E.F., (1999) Acta Hortic., 500, pp. 65-69Haan, J.W.D., Vendeven, L.J., (1973) Org. Magn. Reson., 5, pp. 147-153Azevedo, N.R., Santos, S.C., Miranda, E.G., Ferri, P.H., (1997) Phytochemistry, 46, pp. 1375-1377Cheng, M.J., Lee, S.J., Chang, Y.Y., Wu, S.H., Tsai, I.L., Jayaprakasam, B., Chen, I.S., (2003) Phytochemistry, 63, pp. 603-608Zaitsev, V.G., Mikhal'Chuk, A.L., (2001) Chirality, 13, pp. 488-492Homans, A.L., Fuchs, A., (1970) J. Chromatogr. A, 51, pp. 327-329Koeffler, H.P., Golde, D.W., (1980) Blood, 56, pp. 344-350Hurwitz, R., Hozier, J., Lebien, T., Minowada, J., Gajlpeczalska, K., Kubonishi, I., Kersey, J., (1979) Int. J. Cancer, 23, pp. 174-18

    Cytotoxic Non-aromatic B-ring Flavanones From Piper Carniconnectivum C. Dc.

    No full text
    The EtOAc extract from the leaves of Piper carniconnectivum C. DC. was subjected to chromatographic separation to afford two non-aromatic B-ring flavanone compounds: 5-hydroxy-2-(1′-hydroxy-4′-oxo-cyclohex- 2′-en-1′-yl)-6,7-dimethoxy-2,3-dihydro-4H-chromen-4-one (1) and 5-hydroxy-2-(1′,2′-dihydroxy-4′-oxo-cyclohexyl)-6, 7-dimethoxy-2,3-dihydro-4H-chromen-4-one (2). The absolute configuration of (+)-1 was unambiguously determined as 2S,1′R by electronic circular dichroism (ECD) spectroscopy and comparison to simulated spectra that were calculated using time-dependent density functional theory (TDDFT). This methodology allowed the assignment of the absolute configuration of (+)-2 also as 2S,1′R, except for the stereogenic center at C-2′, which was assigned as R because of the evidence drawn from high resolution NMR experiments. The cytotoxic activity of both compounds and 3 (hydrogenated B-ring derivative of 1) was evaluated on twelve human leukemia cell lines, and the IC50 values (<10 μM) indicated the activity of 1 against seven cell lines. © 2013 Elsevier Ltd. All rights reserved.978187Batista, Jr.J.M., Batista, A.N.L., Rinaldo, D., Vilegas, W., Ambrósio, D.L., Cicarelli, R.M.B., Bolzani, V.S., Furlan, M., Absolute configuration and selective trypanocidal activity of gaudichaudianic acid enantiomers (2011) J. Nat. Prod., 74 (1154), p. 1160Chang, H.-L., Wu, Y.-C., Su, J.-H., Yeh, Y.-T., Yuan, S.-S.F., Protoapigenone, a novel flavonoid, induces apoptosis in human prostate cancer cells through activation of p38 mitogen-activated protein kinase and c-Jun NH2-terminal kinase 1/2 (2008) J. Pharmacol. Exp. Ther., 325, pp. 841-849Chang, H.L., Su, J.H., Yeh, Y.T., Lee, Y.C., Chen, H.M., Wu, Y.C., Yuan, S.S.F., Protoapigenone, a novel flavonoid, inhibits ovarian cancer cell growth in vitro and in vivo (2008) Cancer Lett., 267, pp. 85-95Contreras, R.H., Peralta, J.E., Angular dependence of spin spin coupling constants (2001) Prog. Nucl. Magn. Reson. Spectrosc., 34, pp. 21-425Facundo, V.A., Braz-Filho, R., C-Methylated flavonoids from the roots of Piper carniconnectivum C.DC.(Piperaceae) (2004) Biochem. Syst. Ecol., 32, pp. 1215-1217Facundo, V.A., Sa, A.L., Silva, S.A.F., Morais, S.M., Matos, C.R.R., Braz-Filho, R., Three new natural cyclopentenedione derivatives from Piper carniconnectivum (2004) J. Braz. Chem. Soc., 15, pp. 140-145Felippe, L.G., Batista, Jr.J.M., Baldoqui, D.C., Nascimento, I.R., Kato, M.J., He, Y., Nafie, L.A., Furlan, M., VCD to determine absolute configuration of natural product molecules: Secolignans from Peperomia blanda (2012) Org. Biomol. Chem., 10, pp. 4208-4214Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Fox, J., (2009) Gaussian 09, Revision A.02, , Gaussian Inc. Wallingford CTHarborne, J.B., Williams, C.A., 6-Hydroxyluteolin and scutellarein as phyletic markers in higher plants (1971) Phytochemistry, 10, pp. 367-378Harborne, J.B., Williams, C.A., Leaf survey of flavonoids and simple phenols in the genus Rhododendron (1971) Phytochemistry, 10, pp. 2727-2744Jerz, G., Waibel, R., Achenbach, H., Cyclohexanoid protoflavanones from the stem-bark and roots of Ongokea gore (2005) Phytochemistry, 66, pp. 1698-1706Krivdin, L.B., Contreras, R.H., Recent advances in theoretical calculations of indirect spin-spin coupling constants (2007) Ann. Rep. NMR Spectrosc., 61, pp. 133-245Li, X.-C., Ferreira, D., Ding, Y., Determination of absolute configuration of natural products: Theoretical calculation of electronic circular dichroism as a tool (2010) Curr. Org. Chem., 14, pp. 1678-1697Lin, A.S., Chang, F.R., Wu, C.C., Liaw, C.C., Wu, Y.C., New cytotoxic flavonoids from Thelypteris torresiana (2005) Planta Med., 71, pp. 867-870Lin, A.S., Nakagawa-Goto, K., Chang, F.-R., Yu, D., Morris-Natschke, S.L., Wu, C.-C., Chen, S.-L., Lee, K.-H., First total synthesis of protoapigenone and its analogues as potent cytotoxic agents (2007) J. Med. Chem., 50, pp. 3921-3927Noro, T., Fukushima, S., Saiki, Y., Ueno, A., Akahori, Y., Studies on constituents of Leptorumohra miqueliana H. Ito, II. Structure of protofarrerol (1969) Yakugaku Zasshi, 89, pp. 851-856Polavarapu, P.L., Scalmani, G., Hawkins, E.K., Rizzo, C., Jeirath, N., Ibnusaud, I., Habel, D., Haleema, S., Importance of solvation in understanding the chiroptical spectra of natural products in solution phase: Garcinia acid dimethyl ester (2011) J. Nat. Prod., 74, pp. 321-328Pouny, I., Etiévant, C., Marcourt, L., Huc-Dumas, I., Batut, M., Girard, F., Wright, M., Massiot, G., Protoflavonoids from ferns impair centrosomal integrity of tumor cells (2011) Planta Med., 77, pp. 461-466Ribeiro, J.E.L.S., Hopkins, M.J.G., Vicentini, A., (1999) Flora da Reserva Ducke: Guia de Identificação das Plantas Vasculares de Uma Floresta de Terra-firme Na Amazônia Central, , INPA-DFID Manaus pp. 816Wada, H., Fujita, H., Murakami, T., Saiki, Y., Chen, C.M., Chemical and chemotaxonomical studies of ferns. LXXIII. New flavonoids with modified B-ring from the genus Pseudophegopteris (Thelypteridaceae) (1987) Chem. Pharm. Bull., 35, pp. 4757-4762Wei, A., Zhou, D., Ruan, J., Cai, Y., Xiong, C., Wu, G., Anti-tumor and anti-angiogenic effects of Macrothelypteris viridifrons and its constituents by HPLC-DAD/MS analysis (2012) J. Ethnopharm., 139, pp. 373-38

    Seasonal Influence And Cytotoxicity Of Extracts, Fractions And Major Compounds From Allamanda Schottii

    No full text
    The aim of this research was to evaluate the fractions obtained from the leaf, stem and roots of Allamanda schottii, Pohl, Apocynaceae, responsible for the cytotoxicity, using several cell lines. Cytotoxicity was correlated with the season the part of the plant, and the major compounds were assessed. The ethanol extracts of leaves, stems and roots obtained at different seasons were evaluated in the human erythromyeloblastoid leukemia cell line (K562). Subsequently the ethanol extracts and dichloromethane fractions collected in winter were evaluated in mouse fibroblast cell line (Mus musculus) (L929), cervix adenocarcinoma (HeLa), human pre-B leukemia (Nalm6), as well as K562 cell line. The compounds plumericin, plumieride and ursolic acid isolated from ethanol extracts of the stems were evaluated in the same cell lines, as well as on breast adenocarcinoma cell line (MCF-7), and Mus musculus skin melanoma cell line (B16F10). The chromatographic profiles of the dichloromethane fractions were obtained by high performance liquid chromatography. The results revealed that the season during which A. schottii was collected, and the part of the plant analyzed, influence the cytotoxicity on the K562 cells tested. On the other hand the dichloromethane fractions, mainly from the stems and roots, are responsible for the cytoxicity on the cells tested. These results may be associated with the seasonal variation of plumericin in these parts of the plant. This information is in accordance with the HPLC analysis. The results clearly show the potential for the phytotherapeutic use of this species, and suggest that the cytotoxic activity observed may be due to the presence of plumericin, or to minor compounds not yet identified. The seasonal influence on the production of secondary metabolites was verified.245545552Abdel-Kader, M.S., Wisse, J., Evans, R., Van der Werff, H., Kingston, D.G., Bioactive iridoids and new lignan from Allamanda cathartica and Himatanthus fallax from the Suriname rainforest (1997) J. Nat. Prod, 60, pp. 1294-1297Anderson, J.E., Chang, C.J., McLaughlin, J.L., Bioactive components of Allamanda schotti. J (1988) Nat. Prod, 51, pp. 307-308Castillo, D., Arevalo, J., Herrera, F., Ruiz, C., Rojas, R., Rengifo, E., Vaisberg, A., Sauvain, M., Spirolactone iridoids might be responsible for the anti-leishmanial activity of a Peruvian traditional remedy made with Himatanthus sucuuba (Apocynaceae) (2007) J. Ethnopharmacol, 112, pp. 410-414Correa, C., Jr., Ming, L.C., Scheffer, M.C., (1984) Cultivo de plantas medicinais, condimentares e aromaticas, , 2a. ed., Jaboticabal: FUNEPCragg, G.M., Newman, D.J., (2012) Biodiversidade: Um componente essencial na descoberta de farmacos. Quimica de Produtos Naturais, pp. 319-340. , Rosendo Augusto Yunes, Valdir Cechinel Filho (orgs) Novos Farmacos e a Moderna Farmacognosia, 2nd ed., Edited by Universidade do Vale do Itajai. Itajai, pDewick, P.M., (2002) Medicinal Natural Products: Biosynthetic Approach, , 2nd ed., John Willey & SonsDinda, B., Debnath, S., Harigaya, Y., Naturally occuring iridoids (2007) A Review Part 1. Chem. Pharm. Bull, 55, pp. 159-222Dobhal, M.P., Li, G., Gryshuk, A., Granham, A., Bhatanager, A.K., Khaja, S.D., Joshi, Y.C., Pandey, R.K., Structural modifications of plumeride isolated from Plumeria bicolor and the effect of modifications in vitro anticancer activity (2004) J. Org. Chem, 69, pp. 6165-6172Endress, M.E., Bruyns, P.V., A revised classification of the Apocynaceae (2000) Bot. Rev, 66, pp. 1-56Finney, D.J., (1971) Probit Analysis, , 3rd ed., Edited by Cambridge University Press. CambridgeFouche, G., Gragg, G.M., Pillay, P., Kolesnikova, N., Maharaj, V.J., Senabe, J., In vitro anticancer screening of South African plants (2008) J. Ethnopharmacol, 119, pp. 455-461Ganapaty, S., Rao, D.V., Venkata, R.D., Chemical constituents of flowers of Allamanda schottii pohl (1988) Indian J. Pharm. Sci, 50, pp. 134-135Ghisalberti, E.L., Biological and pharmacological activity of naturally occurring iridoids and secoiridoids (1988) Phytomed, 5, pp. 147-163Gobbo-Neto, L., Lopes, N.P., Plantas medicinais: Fatores de influencia no conteudo de metabolitos secundarios (2007) Quim. Nova, 30, pp. 374-381Gomes, J.P.M., (2008) Pesquisa de atividade antitumoral e mutagenica "in vitro" de produtos naturais, 72p. , Araraquara, Dissertacao de Mestrado, Programa de Mestrado Ciencias Farmaceuticas, UNESPGoncalves, E.G., Lorenzi, H., (2007) Morfologia vegetal: Organografia e dicionario ilustrado de morfologia das plantas vasculares, , Nova Odessa: Instituto Plantarum de Estudos da FloraGuevara, A.P., Amor, E., Russell, G., Antimutagens from Plumeria acuminata ait (1996) Mutation Res, 361, pp. 67-72Hamburger, M.O., Cordell, G.A., Ruangrungsi, N., Tradicional medicinal plants of Thailand XVII (1991) Biologically active constituents of Plumeira rubra. J. Ethnopharmacol, 33, pp. 289-292Hsu, Y.L., Kuo, P.L., Lin, C.C., Proliferative inhibition, cell cycle dysregulation, and induction of apoptosis by ursolic acid in human non-small cell lung cancer A549 cells (2004) Life Sci, 75, pp. 2303-2316Kardono, L.B.S., Tsauri, S.L., Padmawinata, K., Pezzuto, J.M., Kinghorn, A.D., Cytotoxic constituents of the bark of Plumeria rubra collected in Indonesia (1990) J. Nat. Prod, 53, pp. 1447-1455Kuete, V., Efferth, T., Pharmacogenomics of Cameroonian traditional herbal medicine for cancer terapy (2011) J. Ethnopharmacol, 137, pp. 752-766Kupchan, S.M., Dessertine, A.L., Blaylock, B.T., Bruan, R.F., Isolation and structural elucidation of allamandin, an antileukemic iridoide lactone from Allamanda cathartica. J (1974) Org. Chem, 39, pp. 2477-2484Liao, Q., Yan, W., Jia, Y., Che, X., Determination and pharmacokinetic studies of ursolic acid in rat plasma after administration of the traditional chinese medicinal preparation Lu-Ying extract (2005) Yakugaku Zasshi, 124, pp. 509-515Lopes, R.K., Ritter, M.R., Rates, S.M.K., Revisao das atividades biologicas e toxicidade das plantas ornamentais mais utilizadas no Rio Grande do Sul, Brasil (2009) Rev. Bras. de Bioci, 7, pp. 305-315Lorenzi, H., Matos, F.J.A., (2002) Plantas medicinais do Brasil: Nativas e exoticas, , Instituto Plantarum: Nova OdessaMalheiros, A., Schuquel, I.T.A., Vidotti, G.J., Atribuicao inequivoca de deslocamentos quimicos de RMN 1H e 13C de plumierideo isolado de Allamanda cathartica. Quim (1997) Nova, 20, pp. 457-459Moreira, F., (1985) As plantas que curam, , Hemus: Sao PauloMosmann, T., Rapid colorimetric assay for cellular growth and survival (1983) J. Immunol. Methods, 65, pp. 55-63Rahayu, S.S., Allamanda cathartica L: Plant resources of South-East Asia (2001) Medicinal and poisonous plants 2, 51p. , Valkenburg, J.L., Bunyapraphatsara, N. (org), Edited Leiden: Backhuys PublisherSaady, D., Simon, A., Ollier, M., Maurizis, C.J., Chukia, J.A., Delage, C., Inhibitory effect of ursolic acid on B16 proliferation through cell cycle arrest (1996) Cancer Let, 106, pp. 193-197Schmidt, D.F.N., Yunes, R.A., Schaab, E.J., Malheiros, A., Cechinel Filho, V., Franchini, G.C., Jr., Nowill, A.E., Yunes, J.A., Evaluation of the anti-proliferative effect the extracts of Allamanda branchetti and A Schotti on the growth of leukemic and endothelial cells (2006) J. Pharm. Pharmaceut. Sci, 9, pp. 200-208Tan, G.T., Pezzuto, J.M., Kinghorn, A.D., Evaluation of natural products as inhibitors of human imunodecifiency virus type 1 (HIV-1) reverse transcriptase (1991) J. Nat. Prod, 54, pp. 143-154Tiwari, T.N., Pandey, V.B., Dubey, N.K., Plumieride from Allamanda cathartica as an anti-dermatophytic agent (2002) Phytother. Res, 16, pp. 393-394Yim, E.K., Lee, M.J., Lee, K.H., Um, S.J., Park, J.S., Antiproliferative and antiviral mechanisms of ursolic acid and dexamethasone in cervical carcinoma cell line (2006) Int. J. Gynecol. Cancer, 16, pp. 2023-203

    Ankhd1 Silencing Inhibits Stathmin 1 Activity, Cell Proliferation And Migration Of Leukemia Cells

    No full text
    ANKHD1 is highly expressed in human acute leukemia cells and potentially regulates multiple cellular functions through its ankyrin-repeat domains. In order to identify interaction partners of the ANKHD1 protein and its role in leukemia cells, we performed a yeast two-hybrid system screen and identified SIVA, a cellular protein known to be involved in proapoptotic signaling pathways. The interaction between ANKHD1 and SIVA was confirmed by co-imunoprecipitation assays. Using human leukemia cell models and lentivirus-mediated shRNA approaches, we showed that ANKHD1 and SIVA proteins have opposing effects. While it is known that SIVA silencing promotes Stathmin 1 activation, increased cell migration and xenograft tumor growth, we showed that ANKHD1 silencing leads to Stathmin 1 inactivation, reduced cell migration and xenograft tumor growth, likely through the inhibition of SIVA/Stathmin 1 association. In addition, we observed that ANKHD1 knockdown decreases cell proliferation, without modulating apoptosis of leukemia cells, while SIVA has a proapoptotic function in U937 cells, but does not modulate proliferation in vitro. Results indicate that ANKHD1 binds to SIVA and has an important role in inducing leukemia cell proliferation and migration via the Stathmin 1 pathway. ANKHD1 may be an oncogene and participate in the leukemia cell phenotype.18533583593Stone, R.M., O'Donnell, M.R., Sekeres, M.A., Acute myeloid leukemia, Hematology (2004) Am. Soc. Hematol. Educ. Program., pp. 98-117Kornblau, S.M., Womble, M., Qiu, Y.H., Jackson, C.E., Chen, W., Konopleva, M., Estey, E.H., Andreeff, M., Simultaneous activation of multiple signal transduction pathways confers poor prognosis in acute myelogenous leukemia (2006) Blood, 108, pp. 2358-2365Traina, F., Favaro, P.M., Medina Sde, S., Duarte Ada, S., Winnischofer, S.M., Costa, F.F., Saad, S.T., ANKHD1, ankyrin repeat and KH domain containing 1, is overexpressed in acute leukemias and is associated with SHP2 in K562 cells (2006) Biochim. Biophys. Acta, 1762, pp. 828-834Li, J., Mahajan, A., Tsai, M.D., Ankyrin repeat: a unique motif mediating protein-protein interactions (2006) Biochemistry, 45, pp. 15168-15178Hollenbeck, J.J., Danner, D.J., Landgren, R.M., Rainbolt, T.K., Roberts, D.S., Designed ankyrin repeat proteins as scaffolds for multivalent recognition (2012) Biomacromolecules, 13, pp. 1996-2002Sansores-Garcia, L., Atkins, M., Moya, I.M., Shahmoradgoli, M., Tao, C., Mills, G.B., Halder, G., Mask is required for the activity of the Hippo pathway effector Yki/YAP (2013) Curr. Biol., 23, pp. 229-235Machado-Neto, J.A., de Melo Campos, P., Olalla Saad, S.T., Traina, F., YAP1 expression in myelodysplastic syndromes and acute leukemias (2014) Leuk. Lymphoma, 55, pp. 2413-2415Cottini, F., Hideshima, T., Xu, C., Sattler, M., Dori, M., Agnelli, L., Ten Hacken, E., Tonon, G., Rescue of Hippo coactivator YAP1 triggers DNA damage-induced apoptosis in hematological cancers (2014) Nat. Med., 6, pp. 599-606Prasad, K.V., Ao, Z., Yoon, Y., Wu, M.X., Rizk, M., Jacquot, S., Schlossman, S.F., CD27, a member of the tumor necrosis factor receptor family, induces apoptosis and binds to Siva, a proapoptotic protein (1997) Proc. Natl. Acad. Sci. U. S. A., 94, pp. 6346-6351Fortin, A., MacLaurin, J.G., Arbour, N., Cregan, S.P., Kushwaha, N., Callaghan, S.M., Park, D.S., Slack, R.S., The proapoptotic gene SIVA is a direct transcriptional target for the tumor suppressors p53 and E2F1 (2004) J. Biol. Chem., 279, pp. 28706-28714Py, B., Slomianny, C., Auberger, P., Petit, P.X., Benichou, S., Siva-1 and an alternative splice form lacking the death domain, Siva-2, similarly induce apoptosis in T lymphocytes via a caspase-dependent mitochondrial pathway (2004) J. Immunol., 172, pp. 4008-4017Xue, L., Chu, F., Cheng, Y., Sun, X., Borthakur, A., Ramarao, M., Pandey, P., Prasad, K.V., Siva-1 binds to and inhibits BCL-X(L)-mediated protection against UV radiation-induced apoptosis (2002) Proc. Natl. Acad. Sci. U. S. A., 99, pp. 6925-6930Resch, U., Schichl, Y.M., Winsauer, G., Gudi, R., Prasad, K., de Martin, R., Siva1 is a XIAP-interacting protein that balances NFkappaB and JNK signalling to promote apoptosis (2009) J. Cell Sci., 122, pp. 2651-2661Chu, F., Barkinge, J., Hawkins, S., Gudi, R., Salgia, R., Kanteti, P.V., Expression of Siva-1 protein or its putative amphipathic helical region enhances cisplatin-induced apoptosis in breast cancer cells: effect of elevated levels of BCL-2 (2005) Cancer Res., 65, pp. 5301-5309Li, N., Jiang, P., Du, W., Wu, Z., Li, C., Qiao, M., Yang, X., Wu, M., Siva1 suppresses epithelial-mesenchymal transition and metastasis of tumor cells by inhibiting stathmin and stabilizing microtubules (2011) Proc. Natl. Acad. Sci. U. S. A., 108, pp. 12851-12856Belletti, B., Baldassarre, G., Stathmin: a protein with many tasks. New biomarker and potential target in cancer (2011) Expert Opin. Ther. Targets, 15, pp. 1249-1266Rubin, C.I., Atweh, G.F., The role of stathmin in the regulation of the cell cycle (2004) J. Cell. Biochem., 93, pp. 242-250Livak, K.J., Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method (2001) Methods, 25, pp. 402-408Py, B., Bouchet, J., Jacquot, G., Sol-Foulon, N., Basmaciogullari, S., Schwartz, O., Biard-Piechaczyk, M., Benichou, S., The Siva protein is a novel intracellular ligand of the CD4 receptor that promotes HIV-1 envelope-induced apoptosis in T-lymphoid cells (2007) Apoptosis, 12, pp. 1879-1892Poulin, F., Brueschke, A., Sonenberg, N., Gene fusion and overlapping reading frames in the mammalian genes for 4E-BP3 and MASK (2003) J. Biol. Chem., 278, pp. 52290-52297Ruden, D.M., Ma, J., Li, Y., Wood, K., Ptashne, M., Generating yeast transcriptional activators containing no yeast protein sequences (1991) Nature, 350, pp. 250-252Ruden, D.M., Activating regions of yeast transcription factors must have both acidic and hydrophobic amino acids (1992) Chromosoma, 101, pp. 342-348Aho, S., Arffman, A., Pummi, T., Uitto, J., A novel reporter gene MEL1 for the yeast two-hybrid system (1997) Anal. Biochem., 253, pp. 270-272Machado-Neto, J.A., Lazarini, M., Favaro, P., Franchi, G.C., Nowill, A.E., Saad, S.T., Traina, F., ANKHD1, a novel component of the Hippo signaling pathway, promotes YAP1 activation and cell cycle progression in prostate cancer cells (2014) Exp. Cell Res., 324, pp. 137-145Favaro, P., Traina, F., Machado-Neto, J.A., Lazarini, M., Lopes, M.R., Pereira, J.K., Costa, F.F., Saad, S.T., FMNL1 promotes proliferation and migration of leukemia cells (2013) J. Leukoc. Biol., 94, pp. 503-512Jeha, S., Luo, X.N., Beran, M., Kantarjian, H., Atweh, G.F., Antisense RNA inhibition of phosphoprotein p18 expression abrogates the transformed phenotype of leukemic cells (1996) Cancer Res., 56, pp. 1445-1450Iancu, C., Mistry, S.J., Arkin, S., Wallenstein, S., Atweh, G.F., Effects of stathmin inhibition on the mitotic spindle (2001) J. Cell Sci., 114, pp. 909-916Machado-Neto, J.A., de Melo Campos, P., Favaro, P., Lazarini, M., Lorand-Metze, I., Costa, F.F., Olalla Saad, S.T., Traina, F., Stathmin 1 is involved in the highly proliferative phenotype of high-risk myelodysplastic syndromes and acute leukemia cells (2014) Leuk. Res., 38, pp. 251-257Du, W., Jiang, P., Li, N., Mei, Y., Wang, X., Wen, L., Yang, X., Wu, M., Suppression of p53 activity by Siva1 (2009) Cell Death Differ., 16, pp. 1493-1504Sidor, C.M., Brain, R., Thompson, B.J., Mask proteins are cofactors of Yorkie/YAP in the Hippo pathway (2013) Curr. Biol., 23, pp. 223-228Toit, A., Cell signalling: a new Hippo pathway component (2013) Nat. Rev. Mol. Cell Biol., 14, p. 196Smith, R.K., Carroll, P.M., Allard, J.D., Simon, M.A., MASK, a large ankyrin repeat and KH domain-containing protein involved in Drosophila receptor tyrosine kinase signaling (2002) Development, 129, pp. 71-82Muller, P., Kuttenkeuler, D., Gesellchen, V., Zeidler, M.P., Boutros, M., Identification of JAK/STAT signalling components by genome-wide RNA interference (2005) Nature, 436, pp. 871-875Mei, Y., Wu, M., Multifaceted functions of Siva-1: more than an Indian God of Destruction (2012) Protein Cell, 3, pp. 117-122Han, J., Liu, T., Huen, M.S., Hu, L., Chen, Z., Huang, J., SIVA1 directs the E3 ubiquitin ligase RAD18 for PCNA monoubiquitination (2014) J. Cell Biol., 205, pp. 811-827Barkinge, J.L., Gudi, R., Sarah, H., Chu, F., Borthakur, A., Prabhakar, B.S., Prasad, K.V., The p53-induced Siva-1 plays a significant role in cisplatin-mediated apoptosis (2009) J. Carcinog., 8, p. 2Gudi, R., Barkinge, J., Hawkins, S., Chu, F., Manicassamy, S., Sun, Z., Duke-Cohan, J.S., Prasad, K.V., Siva-1 negatively regulates NF-kappaB activity: effect on T-cell receptor-mediated activation-induced cell death (2006) Oncogene, 25, pp. 3458-3462Roos, G., Brattsand, G., Landberg, G., Marklund, U., Gullberg, M., Expression of oncoprotein 18 in human leukemias and lymphomas (1993) Leukemia, 7, pp. 1538-1546Melhem, R.F., Zhu, X.X., Hailat, N., Strahler, J.R., Hanash, S.M., Characterization of the gene for a proliferation-related phosphoprotein (oncoprotein 18) expressed in high amounts in acute leukemia (1991) J. Biol. Chem., 266, pp. 17747-17753Hanash, S.M., Strahler, J.R., Kuick, R., Chu, E.H., Nichols, D., Identification of a polypeptide associated with the malignant phenotype in acute leukemia (1988) J. Biol. Chem., 263, pp. 12813-12815Chen, J., Abi-Daoud, M., Wang, A., Yang, X., Zhang, X., Feilotter, H.E., Tron, V.A., Stathmin 1 is a potential novel oncogene in melanoma (2013) Oncogene, 32, pp. 1330-1337Rana, S., Maples, P.B., Senzer, N., Nemunaitis, J., Stathmin 1: a novel therapeutic target for anticancer activity (2008) Expert. Rev. Anticancer. Ther., 8, pp. 1461-1470Kang, W., Tong, J.H., Chan, A.W., Lung, R.W., Chau, S.L., Wong, Q.W., Wong, N., To, K.F., Stathmin1 plays oncogenic role and is a target of microRNA-223 in gastric cancer (2012) PLoS ONE, 7, p. e33919Grossmann, V., Schnittger, S., Kohlmann, A., Eder, C., Roller, A., Dicker, F., Schmid, C., Haferlach, C., A novel hierarchical prognostic model of AML solely based on molecular mutations (2012) Blood, 120, pp. 2963-2972Sugimoto, K., Toyoshima, H., Sakai, R., Miyagawa, K., Hagiwara, K., Ishikawa, F., Takaku, F., Hirai, H., Frequent mutations in the p53 gene in human myeloid leukemia cell lines (1992) Blood, 79, pp. 2378-2383Gaidano, G., Ballerini, P., Gong, J.Z., Inghirami, G., Neri, A., Newcomb, E.W., Magrath, I.T., Dalla-Favera, R., P53 mutations in human lymphoid malignancies: association with Burkitt lymphoma and chronic lymphocytic leukemia (1991) Proc. Natl. Acad. Sci. U. S. A., 88, pp. 5413-541
    corecore