168 research outputs found

    It\u27s a Soft Shell Life for ME: The Case for Expanding NPDES Permitting to Include Causes of Ocean Acidification

    Get PDF
    Ocean acidification, a lesser-known counterpart to climate change, is primarily caused by the ocean’s absorption of carbon dioxide from the atmosphere. This absorption, in turn, reduces the ocean’s pH, and has detrimental effects on the health of the entire ecosystem. This Comment examines the applicability of the “functional equivalent test,” coined by the Supreme Court in County of Maui v. Hawaii Wildlife Fund, to the causes of ocean acidification. Using this test, this Comment proposes expanding NPDES permitting under the Clean Water Act to cover some landbased sources emitting carbon dioxide

    Measuring Conservation and Nutrient Reduction in Iowa Agriculture

    Get PDF
    An ongoing public concern is the loss of nutrients from agricultural land in the corn belt. In Iowa, nitrogen and phosphorus losses from farm fields are driven by a variety of factors. Since the mid-twentieth century, statewide corn and soybean acres have increased as extended rotations, hay, and pasture declined. Compared to perennial crops and small grain rotations, corn-soybean and continuous corn rotations are leaky systems. They require increased fertilizer rates creating vulnerability to nutrient loss, have a lower capacity for capturing and holding nitrogen (N) during wet conditions, and lack surface cover to prevent soil erosion and phosphorus (P) loss during heavy rain events. These nutrient losses contribute to local stream and river impairments, create challenges for small communities in maintaining safe nitrate levels in drinking water, and add significantly to the size of the dead zone in the Gulf of Mexico

    Conditional Causal Mediation Analysis of Factors Associated With Cover Crop Adoption in Iowa, USA

    Get PDF
    The Iowa Nutrient Reduction Strategy is a statewide effort that aims to encourage voluntary adoption of conservation practices by farmers to reduce the loss of nitrogen and phosphorus that contribute to water quality impairments in the Upper Midwest and drive hypoxic conditions in the Gulf of Mexico. This work is an analysis of the first 2 years (2015–2016) of a 5‐year survey of Iowa farmers. We employ causal mediation analysis to examine the direct and indirect effects of key explanatory variables (e.g., information sources, nutrient management influences, involvement in watershed management activities, and conservation technical assistance) and two causally ordered mediators (farmers\u27 awareness of and attitudes toward the Nutrient Reduction Strategy) on cover crop use. Results showed that participation in watershed activities and receipt of cost share or technical assistance had positive direct effects on cover crop use, while low levels of perceived nutrient loss mitigation self‐efficacy had a negative direct effect. Information and influence of public sector soil and water conservation entities had positive indirect effects on cover crop use through awareness and attitudes, while influence of private sector agribusiness entities had negative indirect effects through those mediators. These results suggest that current strategies such as engaging farmers in watershed management activities and public sector cost share and technical assistance are increasing adoption of cover crops, but the data also point to a need to increase engagement with private sector actors to help them improve their effectiveness as conservation technical assistance providers

    Evaluation of Serum 1,5 Anhydroglucitol Levels as a Clinical Test to Differentiate Subtypes of Diabetes

    Get PDF
    OBJECTIVE: Assignment of the correct molecular diagnosis in diabetes is necessary for informed decisions regarding treatment and prognosis. Better clinical markers would facilitate discrimination and prioritization for genetic testing between diabetes subtypes. Serum 1,5 anhydroglucitol (1,5AG) levels were reported to differentiate maturity-onset diabetes of the young due to HNF1A mutations (HNF1A-MODY) from type 2 diabetes, but this requires further validation. We evaluated serum 1,5AG in a range of diabetes subtypes as an adjunct for defining diabetes etiology. RESEARCH DESIGN AND METHODS: 1,5AG was measured in U.K. subjects with: HNF1A-MODY (n = 23), MODY due to glucokinase mutations (GCK-MODY, n = 23), type 1 diabetes (n = 29), latent autoimmune diabetes in adults (LADA, n = 42), and type 2 diabetes (n = 206). Receiver operating characteristic curve analysis was performed to assess discriminative accuracy of 1,5AG for diabetes etiology. RESULTS: Mean (SD range) 1,5AG levels were: GCK-MODY 13.06 microg/ml (5.74-29.74), HNF1A-MODY 4.23 microg/ml (2.12-8.44), type 1 diabetes 3.09 microg/ml (1.45-6.57), LADA 3.46 microg/ml (1.42-8.45), and type 2 diabetes 5.43 (2.12-13.23). Levels in GCK-MODY were higher than in other groups (P < 10(-4) vs. each group). HNF1A-MODY subjects showed no difference in unadjusted 1,5AG levels from type 2 diabetes, type 1 diabetes, and LADA. Adjusting for A1C revealed a difference between HNF1A-MODY and type 2 diabetes (P = 0.001). The discriminative accuracy of unadjusted 1,5AG levels was 0.79 for GCK-MODY versus type 2 diabetes and 0.86 for GCK-MODY versus HNF1A-MODY but was only 0.60 for HNF1A-MODY versus type 2 diabetes. CONCLUSIONS: In our dataset, serum 1,5AG performed well in discriminating GCK-MODY from other diabetes subtypes, particularly HNF1A-MODY. Measurement of 1,5AG levels could inform decisions regarding MODY diagnostic testing

    Genome-wide association analysis and fine mapping of NT-proBNP level provide novel insight into the role of the MTHFR-CLCN6-NPPA-NPPB gene cluster

    Get PDF
    High blood concentration of the N-terminal cleavage product of the B-type natriuretic peptide (NT-proBNP) is strongly associated with cardiac dysfunction and is increasingly used for heart failure diagnosis. To identify genetic variants associated with NT-proBNP level, we performed a genome-wide association analysis in 1325 individuals from South Tyrol, Italy, and followed up the most significant results in 1746 individuals from two German population-based studies. A genome-wide significant signal in the MTHFR-CLCN6-NPPA-NPPB gene cluster was replicated, after correction for multiple testing (replication one-sided P-value = 8.4 × 10−10). A conditional regression analysis of 128 single-nucleotide polymorphisms in the region of interest identified novel variants in the CLCN6 gene as independently associated with NT-proBNP. In this locus, four haplotypes were associated with increased NT-proBNP levels (haplotype-specific combined P-values from 8.3 × 10−03 to 9.3 × 10−11). The observed increase in the NT-proBNP level was proportional to the number of haplotype copies present (i.e. dosage effect), with an increase associated with two copies that varied between 20 and 100 pg/ml across populations. The identification of novel variants in the MTHFR-CLCN6-NPPA-NPPB cluster provides new insights into the biological mechanisms of cardiac dysfunction

    Sensitivity and specificity of NT-proBNP to detect heart failure at post mortem examination

    Get PDF
    NT-proBNP, a marker of cardiac failure, has been shown to be stable in post mortem samples. The aim of this study was to assess the accuracy of NT-proBNP to detect heart failure in the forensic setting. One hundred sixty-eight consecutive autopsies were included in the study. NT-proBNP blood concentrations were measured using a chemiluminescent immunoassay kit. Cardiac failure was assessed by three independent forensic experts using macro- and microscopic findings complemented by information about the circumstances of body discovery and the known medical story. Area under the receiving operator curve was of 65.4% (CI 95%, from 57.1 to 73.7). Using a standard cut-off value of >220 pg/mL for NT-proBNP blood concentration, heart failure was detected with a sensitivity of 50.7% and a specificity of 72.6%. NT-proBNP vitreous humor values were well correlated to the ones measured in blood (r2 = 0.658). Our results showed that NT-proBNP can corroborate the pathological findings in cases of natural death related to heart failure, thus, keeping its diagnostic properties passing from the ante mortem to the post mortem setting. Therefore, biologically inactive polypeptides like NT-proBNP seem to be stable enough to be used in forensic medicine as markers of cardiac failure, taking into account the sensitivity and specificity of the test
    corecore