8 research outputs found

    Grazing angle X-ray fluorescence from periodic structures on silicon and silica surfaces

    Get PDF
    Various 3-dimensional nano-scaled periodic structures with different configurations and periods deposited on the surface of silicon and silica substrates were investigated by means of the grazing incidence and grazing emission X-ray fluorescence techniques. Apart from the characteristics which are typical for particle- and layer-like samples, the measured angular intensity profiles show additional periodicity-related features. The latter could be explained by a novel theoretical approach based on simple geometrical optics (GO) considerations. The new GO-based calculations were found to yield results in good agreement with experiment, also in cases where other theoretical approaches are not valid, e.g., periodic particle distributions with an increased surface coverage

    Revealing the bonding of solvated Ru complexes with valence-to-core resonant inelastic X-ray scattering

    No full text
    Ru-complexes are widely studied because of their use in biological applications and photoconversion technologies. We reveal novel insights into the chemical bonding of a series of Ru(ii)- and Ru(iii)-complexes by leveraging recent advances in high-energy-resolution tender X-ray spectroscopy and theoretical calculations. We perform Ru 2p4d resonant inelastic X-ray scattering (RIXS) to probe the valence excitations in dilute solvated Ru-complexes. Combining these experiments with a newly developed theoretical approach based on time-dependent density functional theory, we assign the spectral features and quantify the metal-ligand bonding interactions. The valence-to-core RIXS features uniquely identify the metal-centered and charge transfer states and allow extracting the ligand-field splitting for all the complexes. The combined experimental and theoretical approach described here is shown to reliably characterize the ground and excited valence states of Ru complexes, and serve as a basis for future investigations of ruthenium, or other 4d metals active sites, in biological and chemical applications

    Systematic Structure–Property Relationship Studies in Palladium-Catalyzed Methane Complete Combustion

    No full text
    To limit further rising levels in methane emissions from stationary and mobile sources and to enable promising technologies based on methane, the development of efficient combustion catalysts that completely oxidize CH<sub>4</sub> to CO<sub>2</sub> and H<sub>2</sub>O at low temperatures in the presence of high steam concentrations is required. Palladium is widely considered as one of the most promising materials for this reaction, and a better understanding of the factors affecting its activity and stability is crucial to design even more improved catalysts that efficiently utilize this precious metal. Here we report a study of the effect of three important variables (particle size, support, and reaction conditions including water) on the activity of supported Pd catalysts. We use uniform palladium nanocrystals as catalyst precursors to prepare a library of well-defined catalysts to systematically describe structure–property relationships with help from theory and in situ X-ray absorption spectroscopy. With this approach, we confirm that PdO is the most active phase and that small differences in reaction rates as a function of size are likely due to variations in the surface crystal structure. We further demonstrate that the support exerts a limited influence on the PdO activity, with inert (SiO<sub>2</sub>), acidic (Al<sub>2</sub>O<sub>3</sub>), and redox-active (Ce<sub>0.8</sub>Zr<sub>0.2</sub>O<sub>2</sub>) supports providing similar rates, while basic (MgO) supports show remarkably lower activity. Finally, we show that the introduction of steam leads to a considerable decrease in rates that is due to coverage effects, rather than structural and/or phase changes. Altogether, the data suggest that to further increase the activity and stability of Pd-based catalysts for methane combustion, increasing the surface area of supported PdO phases while avoiding strong adsorption of water on the catalytic surfaces is required. This study clarifies contrasting reports in the literature about the active phase and stability of Pd-based materials for methane combustion

    Environmental tracking by females

    No full text

    A Bibliography on Polish Americans, 2006–2010

    No full text

    Bibliography

    No full text
    corecore