37 research outputs found

    Quasiparticle interference and the interplay between superconductivity and density wave order in the cuprates

    Full text link
    Scanning tunneling spectroscopy (STS) is a useful probe for studying the cuprates in the superconducting and pseudogap states. Here we present a theoretical study of the Z-map, defined as the ratio of the local density of states at positive and negative bias energies, which frequently is used to analyze STS data. We show how the evolution of the quasiparticle interference peaks in the Fourier transform Z-map can be understood by considering different types of impurity scatterers, as well as particle-hole asymmetry in the underlying bandstructure. We also explore the effects of density wave orders, and show that the Fourier transform Z-map may be used to both detect and distinguish between them.Comment: final version published in Phys. Rev.

    Quantum Dynamics of the Hubbard-Holstein Model in Equilibrium and Non-Equilibrium: Application to Pump-Probe Phenomena

    Full text link
    The spectral response and physical features of the 2D Hubbard-Holstein model are calculated both in equilibrium at zero and low chemical dopings, and after an ultra short powerful light pulse, in undoped systems. At equilibrium and at strong charge-lattice couplings, the optical conductivity reveals a 3-peak structure in agreement with experimental observations. After an ultra short pulse and at nonzero electron-phonon interaction, phonon and spin subsystems oscillate with the phonon period Tph≈80T_{ph} \approx 80 fs. The decay time of the phonon oscillations is about 150-200 fs, similar to the relaxation time of the charge system. We propose a criterion for observing these oscillations in high TcT_c compounds: the time span of the pump light pulse τpump\tau_{pump} has to be shorter than the phonon oscillation period TphT_{ph}.Comment: 4 pages, 4 figure

    Material and doping dependence of the nodal and anti-nodal dispersion renormalizations in single- and multi-layer cuprates

    Full text link
    In this paper we present a review of bosonic renormalization effects on electronic carriers observed from angle-resolved photoemission spectra in the cuprates. We specifically discuss the viewpoint that these renormalizations represent coupling of the electrons to the lattice, and review how the wide range of materials dependence, such as the number of CuO2_2 layers, and the doping dependence can be straightforwardly understood as arising due to novel electron-phonon coupling.Comment: 9 pages and 6 figures. Submitted as a review article for Advances in Condensed Matter Physic

    Quantifying electronic correlation strength in a complex oxide: a combined DMFT and ARPES study of LaNiO3_3

    Get PDF
    The electronic correlation strength is a basic quantity that characterizes the physical properties of materials such as transition metal oxides. Determining correlation strengths requires both precise definitions and a careful comparison between experiment and theory. In this paper we define the correlation strength via the magnitude of the electron self-energy near the Fermi level. For the case of LaNiO3_3, we obtain both the experimental and theoretical mass enhancements m⋆/mm^\star/m by considering high resolution angle-resolved photoemission spectroscopy (ARPES) measurements and density functional + dynamical mean field theory (DFT + DMFT) calculations. We use valence-band photoemission data to constrain the free parameters in the theory, and demonstrate a quantitative agreement between the experiment and theory when both the realistic crystal structure and strong electronic correlations are taken into account. These results provide a benchmark for the accuracy of the DFT+DMFT theoretical approach, and can serve as a test case when considering other complex materials. By establishing the level of accuracy of the theory, this work also will enable better quantitative predictions when engineering new emergent properties in nickelate heterostructures.Comment: 10 pages, 5 figure

    Doping evolution of spin and charge excitations in the Hubbard model

    Full text link
    To shed light on how electronic correlations vary across the phase diagram of the cuprate superconductors, we examine the doping evolution of spin and charge excitations in the single-band Hubbard model using determinant quantum Monte Carlo (DQMC). In the single-particle response, we observe that the effects of correlations weaken rapidly with doping, such that one may expect the random phase approximation (RPA) to provide an adequate description of the two-particle response. In contrast, when compared to RPA, we find that significant residual correlations in the two-particle excitations persist up to 40%40\% hole and 15%15\% electron doping (the range of dopings achieved in the cuprates). These fundamental differences between the doping evolution of single- and multi-particle renormalizations show that conclusions drawn from single-particle processes cannot necessarily be applied to multi-particle excitations. Eventually, the system smoothly transitions via a momentum-dependent crossover into a weakly correlated metallic state where the spin and charge excitation spectra exhibit similar behavior and where RPA provides an adequate description.Comment: 5 pages, 4 figures, plus supplementary materia
    corecore