14 research outputs found

    ZBED4, a cone and Müller cell protein in human retina, has a different cellular expression in mouse.

    Get PDF
    PurposeZBED4, a protein in cones and Müller cells of human retina, may play important functions as a transcriptional activator of genes expressed in those cells or as a co-activator/repressor of their nuclear hormone receptors. To begin investigating these potential roles of ZBED4, we studied the developmental expression and localization of both the Zbed4 mRNA and protein of mouse retina.Methodsnorthern blots showed the presence of Zbed4 mRNA in retina and other mouse tissues, and western blots showed the nuclear and cytoplasmic expression of Zbed4 at different developmental times. Antibodies against Zbed4 and specific retinal cell markers were used for retinal immunohistochemistry.ResultsZbed4 mRNA was present at different levels in all the mouse tissues analyzed. The Zbed4 protein was barely detectable at embryonic day (E)14.5 but was clearly seen at E16 at both retinal outer and vitreal borders and throughout the retina by E18 and postnatal day 0 (P0). Thereafter, Zbed4 expression was more restricted to the inner retina. While ZBED4 is localized in cones and endfeet of Müller cells of human retina, in adult mouse retina Zbed4 is only detected in Müller cell endfeet and processes. The same localization of Zbed4 was observed in rat retina. In early development, Zbed4 is mainly present in the nuclear fraction of the mouse retina, and in adulthood it becomes more enriched in the cytoplasmic fraction.ConclusionsThe patterns of spatial and temporal expression of Zbed4 in the mouse retina suggest a possible involvement of this protein in retinal morphogenesis and Müller cell function

    Cloning and Characterization of the Canine Photoreceptor Specific Cone-Rod Homeobox (CRX) Gene and Evaluation as a Candidate for Early Onset Photoreceptor Diseases in the Dog

    Get PDF
    Purpose: The cone-rod homeobox protein (CRX) is a member of the homeodomain-containing protein family expressed in the retinal photoreceptors and pinealocytes; it is involved in the regulation of the coordinate expression of multiple photoreceptor specific genes during retinal development. Mutations in the CRX gene are causally associated with retinal degeneration phenotypes in man. To clone the full length cDNA, characterize the genomic organization of canine CRX, map the gene in a radiation hybrid (RH) panel, and evaluate it as a candidate for canine inherited retinal degenerations. Methods: cDNA representational difference analysis (RDA) was done using normal and cone degeneration (cd) affected retinas. Exonic primers designed from consensus sequences of mammalian CRX cDNA were used to amplify and sequence dog genomic DNA. Canine specific primers were used for RH mapping of CRX on the RH3000 cell line. Linkage, sequencing and/or mapping the disease locus was used to evaluate CRX as a disease associated candidate gene. Results: The gene comprises three exons and two introns and codes for a transcript with a 900 bp open reading frame (ORF). In agreement with human map data, RH mapping placed canine CRX on the proximal end of CFA1, in a region of synteny with HSA19q13-q13.3. Based on RH mapping, meiotic linkage or sequencing data, we excluded CRX as the cause of canine early onset photoreceptor degenerations affecting Alaskan malamutes (cd), collies (rod-cone dysplasia 2, rcd2), American Staffordshire terriers, and Tibetan terriers. Conclusions: Canine CRX has a high level of nucleotide and amino acid sequence identity with ortholgous sequences reported for other species. The gene is excluded from causal association with 4 early onset photoreceptor diseases affecting cones (cd) or rods and cones (rcd2, PRA in American Staffordshire terriers, and Tibetan terriers)

    Transfer of MicroRNAs by Embryonic Stem Cell Microvesicles

    Get PDF
    Microvesicles are plasma membrane-derived vesicles released into the extracellular environment by a variety of cell types. Originally characterized from platelets, microvesicles are a normal constituent of human plasma, where they play an important role in maintaining hematostasis. Microvesicles have been shown to transfer proteins and RNA from cell to cell and they are also believed to play a role in intercellular communication. We characterized the RNA and protein content of embryonic stem cell microvesicles and show that they can be engineered to carry exogenously expressed mRNA and protein such as green fluorescent protein (GFP). We demonstrate that these engineered microvesicles dock and fuse with other embryonic stem cells, transferring their GFP. Additionally, we show that embryonic stem cells microvesicles contain abundant microRNA and that they can transfer a subset of microRNAs to mouse embryonic fibroblasts in vitro. Since microRNAs are short (21–24 nt), naturally occurring RNAs that regulate protein translation, our findings open up the intriguing possibility that stem cells can alter the expression of genes in neighboring cells by transferring microRNAs contained in microvesicles. Embryonic stem cell microvesicles may be useful therapeutic tools for transferring mRNA, microRNAs, protein, and siRNA to cells and may be important mediators of signaling within stem cell niches

    ESMVs contain miRNAs.

    No full text
    <p>The relative abundance of several miRNAs in ESMVs compared with ESCs was determined by real time quantitative RT-PCR. The miRNAs tested include <i>miR-16</i> (lane 1), <i>miR-21</i> (lane 2), <i>miR-22</i> (lane 3), <i>miR-290</i> (lane 4), <i>miR-291-3p</i> (lane 5), <i>miR-292-3p</i> (lane 6), <i>miR-294</i> (lane 7), <i>miR-295</i> (lane 8), and the small nuclear RNA, <i>RNU6b</i> (lane 9). (A) Box plots of relative abundance in ESMVs compared with ESCs (n = 9). The boxed area represents the mean±quartile and the whiskers extend out to the minimum and maximum values. Bootstrap ANOVA was performed and a significant difference was detected between all groups (<i>p</i> = 0.008). (B) The 95<sup>th</sup> percentile confidence interval for each miRNA was determined and plotted on a bar graph. Non-overlapping groups are significantly different from each other. RNU6b is significantly less abundant than all miRNAs tested except <i>for miR-22, miR-290,</i> and <i>miR-291.</i> The majority of miRNAs tested do not differ significantly from one another except for <i>miR-295</i>, which is significantly more abundant than <i>miR-290</i> and <i>miR-291</i>.</p

    ESMVs transfer miRNAs.

    No full text
    <p>MEFs were incubated with ESMVs for 1, 12, 36, or 54 hours and transfer of miRNAs was determined by real time quantitative RT-PCR (n = 5). Time point 0 represents MEFs without ESMVs. The difference in Ct values between the negative control (MEFs alone) and each experimental group (miR-290, miR-291-3p, miR-292-3p, miR-294, miR-295, miR-16, and RNU6b) is shown. Positive values indicate transfer of miRNA.</p
    corecore