4,776 research outputs found

    Current and current fluctuations in quantum shuttles

    Get PDF
    We review the properties of electron shuttles, i.e. nanoelectromechanical devices that transport electrons one-by-one by utilizing a combination of electronic and mechanical degrees of freedom. We focus on the extreme quantum limit, where the mechanical motion is quantized. We introduce the main theoretical tools needed for the analysis, e.g. generalized master equations and Wigner functions, and we outline the methods how the resulting large numerical problems can be handled. Illustrative results are given for current, noise, and full counting statistics for a number of model systems. Throughout the review we focus on the physics behind the various approximations, and some simple examples are given to illustrate the theoretical concepts. We also comment on the experimental situation.Comment: Minireview; technical level aimed at general audience, based on an invited talk at "Transport Phenomena in Micro and Nanodevices", October 17-21 Kona, Hawai

    Low-temperature nucleation in a kinetic Ising model with soft stochastic dynamics

    Full text link
    We study low-temperature nucleation in kinetic Ising models by analytical and simulational methods, confirming the general result for the average metastable lifetime, = A*exp(beta*Gamma) (beta = 1/kT) [E. Jordao Neves and R.H. Schonmann, Commun. Math. Phys. 137, 209 (1991)]. Contrary to common belief, we find that both A and Gamma depend significantly on the stochastic dynamic. In particular, for a ``soft'' dynamic, in which the effects of the interactions and the applied field factorize in the transition rates, Gamma does NOT simply equal the energy barrier against nucleation, as it does for the standard Glauber dynamic, which does not have this factorization property.Comment: 4 pages RevTex4, 2 figures. Phys. Rev. Lett., in pres

    Quantum systems in a stationary environment out of thermal equilibrium

    Full text link
    We discuss how the thermalization of an elementary quantum system is modified when the system is placed in an environment out of thermal equilibrium. To this aim we provide a detailed investigation of the dynamics of an atomic system placed close to a body of arbitrary geometry and dielectric permittivity, whose temperature TMT_M is different from that of the surrounding walls TWT_W. A suitable master equation for the general case of an NN-level atom is first derived and then specialized to the cases of a two- and three-level atom. Transition rates and steady states are explicitly expressed as a function of the scattering matrices of the body and become both qualitatively and quantitatively different from the case of radiation at thermal equilibrium. Out of equilibrium, the system steady state depends on the system-body distance, on the geometry of the body and on the interplay of all such parameters with the body optical resonances. While a two-level atom tends toward a thermal state, this is not the case already in the presence of three atomic levels. This peculiar behavior can be exploited, for example, to invert the populations ordering and to provide an efficient cooling mechanism for the internal state of the quantum system. We finally provide numerical studies and asymptotic expressions when the body is a slab of finite thickness. Our predictions can be relevant for a wide class of experimental configurations out of thermal equilibrium involving different physical realizations of two or three-level systems.Comment: 20 pages, 15 figures, published versio

    An analytical model for the detection of levitated nanoparticles in optomechanics

    Get PDF
    Interferometric position detection of levitated particles is crucial for the centre-of-mass (CM) motion cooling and manipulation of levitated particles. In combination with balanced detection and feedback cooling, this system has provided picometer scale position sensitivity, zeptonewton force detection, and sub-millikelvin CM temperatures. In this article, we develop an analytical model of this detection system and compare its performance with experimental results allowing us to explain the presence of spurious frequencies in the spectra

    Ising model with memory: coarsening and persistence properties

    Full text link
    We consider the coarsening properties of a kinetic Ising model with a memory field. The probability of a spin-flip depends on the persistence time of the spin in a state. The more a spin has been in a given state, the less the spin-flip probability is. We numerically studied the growth and persistence properties of such a system on a two dimensional square lattice. The memory introduces energy barriers which freeze the system at zero temperature. At finite temperature we can observe an apparent arrest of coarsening for low temperature and long memory length. However, since the energy barriers introduced by memory are due to local effects, there exists a timescale on which coarsening takes place as for the Ising model. Moreover the two point correlation functions of the Ising model with and without memory are the same, indicating that they belong to the same universality class.Comment: 10 pages, 7 figures; some figures and some comments adde

    Projected single-spin flip dynamics in the Ising Model

    Get PDF
    We study transition matrices for projected dynamics in the energy-magnetization space, magnetization space and energy space. Several single spin flip dynamics are considered such as the Glauber and Metropolis canonical ensemble dynamics and the Metropolis dynamics for three multicanonical ensembles: the flat energy-magnetization histogram, the flat energy histogram and the flat magnetization histogram. From the numerical diagonalization of the matrices for the projected dynamics we obtain the sub-dominant eigenvalue and the largest relaxation times for systems of varying size. Although, the projected dynamics is an approximation to the full state space dynamics comparison with some available results, obtained by other authors, shows that projection in the magnetization space is a reasonably accurate method to study the scaling of relaxation times with system size. The transition matrices for arbitrary single-spin flip dynamics are obtained from a single Monte-Carlo estimate of the infinite temperature transition-matrix, for each system size, which makes the method an efficient tool to evaluate the relative performance of any arbitrary local spin-flip dynamics. We also present new results for appropriately defined average tunnelling times of magnetization and compute their finite-size scaling exponents that we compare with results of energy tunnelling exponents available for the flat energy histogram multicanonical ensemble.Comment: 23 pages and 6 figure

    Fast Simulation of Facilitated Spin Models

    Full text link
    We show how to apply the absorbing Markov chain Monte Carlo algorithm of Novotny to simulate kinetically constrained models of glasses. We consider in detail one-spin facilitated models, such as the East model and its generalizations to arbitrary dimensions. We investigate how to maximise the efficiency of the algorithms, and show that simulation times can be improved on standard continuous time Monte Carlo by several orders of magnitude. We illustrate the method with equilibrium and aging results. These include a study of relaxation times in the East model for dimensions d=1 to d=13, which provides further evidence that the hierarchical relaxation in this model is present in all dimensions. We discuss how the method can be applied to other kinetically constrained models.Comment: 8 pages, 4 figure

    Optical extinction in a single layer of nanorods

    Full text link
    We demonstrate that almost 100 % of incident photons can interact with a monolayer of scatterers in a symmetrical environment. Nearly-perfect optical extinction through free-standing transparent nanorod arrays has been measured. The sharp spectral opacity window, in the form of a characteristic Fano resonance, arises from the coherent multiple scattering in the array. In addition, we show that nanorods made of absorbing material exhibit a 25-fold absorption enhancement per unit volume compared to unstructured thin film. These results open new perspectives for light management in high-Q, low volume dielectric nanostructures, with potential applications in optical systems, spectroscopy, and optomechanics

    A Numerical Transfer-Matrix Study of Surface-Tension Anisotropy in Ising Models on Square and Cubic Lattices

    Full text link
    We compute by numerical transfer-matrix methods the surface free energy τ(T),\tau(T), the surface stiffness coefficient κ(T),\kappa(T), and the single-step free energy s(T)s(T) for Ising ferromagnets with (∞×L)(\infty \times L) square-lattice and (∞×L×M)(\infty \times L \times M) cubic-lattice geometries, into which an interface is introduced by imposing antiperiodic or plus/minus boundary conditions in one transverse direction. These quantities occur in expansions of the angle-dependent surface tension, either for rough or for smooth interfaces. The finite-size scaling behavior of the interfacial correlation length provides the means of investigating κ(T)\kappa(T) and s(T).s(T). The resulting transfer-matrix estimates are fully consistent with previous series and Monte Carlo studies, although current computational technology does not permit transfer-matrix studies of sufficiently large systems to show quantitative improvement over the previous estimates.Comment: 40 pages, 17 figures available on request. RevTeX version 2.
    • …
    corecore