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We review the properties of electron shuttles, i.e., nanoelectromechanical devices that transport
electrons one by one by utilizing a combination of electronic and mechanical degrees of freedom.
We focus on the extreme quantum limit, where the mechanical motion is quantized. We introduce
the main theoretical tools needed for the analysis, e.g., generalized master equations and Wigner
functions, and we outline the methods how the resulting large numerical problems can be handled.
Illustrative results are given for current, noise, and full counting statistics for a number of model
systems. Throughout the review we focus on the physics behind the various approximations, and
some simple examples are given to illustrate the theoretical concepts. We also comment on the
experimental situation. © 2005 American Institute of Physics. �DOI: 10.1063/1.1949207�

I. INTRODUCTION

As advances in technology push the size of the elec-
tronic components towards the nanometer scale, the well-
established technology of micorelectromechanical systems
begins to acquire quantum features. This trend signals the
birth of a new research field, nanoelectromechanical systems
�NEMS�. Despite of the infancy of NEMS, a large literature
is already available on it, and for a broad overview the inter-
ested reader is referred to recent review papers.1–3 The re-
view at hand has a more restricted scope: it is devoted to a
theoretical analysis of a very specific NEMS device, the elec-
tron shuttle. By presenting a detailed study of such an ideal-
ized model system, we hope to be able to illustrate the basic
physics and conceptual problems that need to be understood
before a general theory of NEMS can be developed.

The electron shuttle, originally introduced by Gorelik
et al. in 1998,4 consists of a movable nanoscopic grain which
is coupled via tunnel barriers to source and drain electrodes.
A subtle combination of the quantum transport and the me-
chanical degrees of freedom play an essential role for the
functionality of the device. The device can exhibit a “phase
transition”: when a control parameter is tuned �this could be
the damping of the oscillator�, at a certain threshold value the

system enters a new transport regime, the shuttle regime,
where charge is transported in an orderly fashion �i.e., essen-
tially a fixed number of charges per mechanical oscillation
cycle�. �This phenomenon is particularly pronounced if the
device operates in the strong Coulomb blockade regime,
where only one excess charge at a time is allowed in the
movable part.� In the original suggestion of Ref. 4, the mo-
tion of the movable grain was treated macroscopically, i.e.,
with Newton’s equation of motion. In our group, we have
been asking questions regarding what happens when the
movable body is so light that its motion also becomes quan-
tized. For example, does the shuttle transition persist in the
quantum regime? Another interesting question concerns the
interpretation of measurements of NEMS devices, possibly
exhibiting shuttling. As it turns out, a measurement of the
stationary IV characteristics does not always yield enough
information to uniquely identify the underlying microscopic
charge transport mechanism. A point in case is the C60

single-electron transistor experiment by Park et al.5 where
two alternative interpretations, namely, incoherent phonon
assisted tunneling6–9 or shuttling,4,10 are plausible. The cur-
rent noise provides another important characteristics, supple-
mentary to the mean current.11–13 The Fano factor which
characterizes the degree of correlation between charge trans-
port events is a powerful diagnostic tool to distinguish be-
tween various transport mechanisms. Therefore, studies of
the current noise in NEMS have become an active field of
research.14–20 Based on the studies where the mechanical
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system is treated classically, one expects a giant enhance-
ment of noise at the shuttling transition,18 and we want to
investigate whether this also occurs in the quantum case.
One can go even further along this line: why stop at the
current noise, which is the second cumulant of the full count-
ing statics �FCS�? Surely FCS �which equals the probability
Pn�t� of n electrons being collected, say, in the right lead in
the time span 0 to t� will contain even more detailed infor-
mation. Consequently, FCS in mesoscopic devices has been a
very active research field for some time now, and its impor-
tance and relevance have been underlined by a recent mea-
surement of the third cumulant.21 Thus, FCS for NEMS is
obviously an interesting issue. We are aware of a recent cal-
culation for a classical, driven shuttle,15 and at the end of this
paper we illustrate some of our own very recent generaliza-
tions of these concepts to the quantum regime using a simple
example; a full description is given elsewhere.22

We have investigated quantum shuttles in several recent
papers,19,22–26 where the full technical details can be found;
the purpose of the present paper is to introduce some of the
basic issues to a more general reader. Several other groups
have also recently studied quantum shuttles, see, e.g., Refs.
27–30. The paper is organized as follows. In Sec. II, we
introduce the models of quantum shuttles employed in our
work. The total Hamiltonian consisting of the “system” �both
mechanical and electronic degrees of freedom of the quan-
tum dot�s��, the leads, and a generic heat bath is used to
illustrate the derivation of a Markovian generalized master
equation �GME� which is the starting point of the theoretical
analysis. Along the way from the Hamiltonian to the gener-
alized master equation we identify the necessary assumptions
and point out several issues of potential importance not ad-
dressed so far within the field of NEMS.

In Sec. III, we discuss the calculation of the current and
the zero-frequency component of the current noise spectrum
for a NEMS device described by a Markovian GME. We also
give a qualitative discussion of the required numerical calcu-
lations, which are highly nontrivial due to the large dimen-
sions of the involved matrices. Finally, some examples of our
numerical results are displayed. Section IV is devoted to an
elementary discussion of the calculation of the full counting
statistics, and a brief review of the experimental status.

II. THE MODEL

At least two model systems have been considered in the
literature. Gorelik et al.4 considered a single movable quan-
tum dot, while Armour and MacKinnon31 introduced a model
of a three-dot array whose central dot is movable, see Fig. 1.
Both these systems are of intrinsic interest and may find
applications in real systems. The quantum system is assumed
to be in the strong Coulomb blockade regime in which none
or only one extra �spinless� electron in the whole system is
allowed. Thus, in the one-dot case the electronic states are
�0� and �1�, while in the triple-dot case we have �0�, �L�, �C�,
and �R�. The quantum system is coupled to two leads with a
high bias applied between them. The bias is smaller than the
charging energy for addition or removal of other electrons
but otherwise it is the largest energy scale in the model.

The moving dot interacts with its surroundings and its
dissipative dynamics is described by the interaction with a
generic heat bath. The Hamiltonian has the form

Ĥ = Ĥosc + Ĥel + Ĥel-leads�x̂� + Ĥleads + Ĥbath + Ĥosc-bath,

�1a�

where

Ĥosc =
p̂2

2m
+

m�0
2x̂2

2
�1b�

describes the mechanical center-of-mass motion of the cen-
tral dot as a one-dimensional harmonic oscillator with mass
m and frequency �0. We emphasize the importance of the

nonlinear dependence of Ĥel-leads on the oscillator degree of
freedom; the x̂ dependence is often exponential which lies at
the heart of the shuttling instability. We refer to the literature
for explicit expressions for the other terms appearing in Eq.
�1a�.4,23,31 The leads are held at different electrochemical po-
tentials �L,R whose difference gives the bias across the array
�see Fig. 1�. We assume that the tunneling densities of states
are independent of energy. This is necessary for the first
Markov approximation,32 used later on, to hold. Further, as
already implied above, we assume �L→�, �R→−�. These
assumptions are necessary for the derivation of the Markov-
ian dynamics of the movable system. At present, there are
several open questions concerning the correct form of the
appropriate non-Markovian generalized master equation for
shuttle systems �also, the numerical methods are available
only for Markovian systems�, and calculations for quantum
shuttles as a function of the external bias have not been re-
ported, at least to the best of our knowledge. We are thus
restricted to presenting results as a function of the damping,
which cannot be tuned experimentally in any straightforward
fashion, or, in the case of a triple-dot shuttle �see Fig. 1�, as
a function of the device bias, which can be tuned by gates.
Thus, our calculations should be distinguished from the pio-
neering work of Gorelik et al.,4 which studied the shuttling
transition of a classical shuttle as a function of external bias.
We do believe, however, that also the quantum shuttle can

FIG. 1. Schematic picture of a three-dot system, introduced by Armour and
MacKinnon �Ref. 31�. The outer dots are fixed—the left one L at the posi-
tion −x0 and the right one R at x0, while the central one C can move
�position x̂� in a harmonic confining potential. It also interacts with a heat
bath causing damping and thermal noise. The outer dots whose respective
energy levels are dealigned by the device bias �b are coupled to the full or
empty electronic reservoirs �leads�, respectively. The current flows within
the system due to tunneling between the left and central dots and the central
and right dots. �Reproduced from Ref. 25.�
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exhibit the shuttling transition as the bias is varied. There are
three pieces of indirect evidence suggesting this. �i� The
quantum shuttle bears in many respects a strong analog with
the classical shuttle, where the transition does take place. �ii�
We can perform calculations for different values for the elec-
tric field E acting on the shuttle �see Fig. 2 and Eq. �3�
below�, and we observe the shuttling transition �or a cross-
over� taking place as the electric field is increased. �iii� For a
triple-dot shuttle, we observe a shuttling transition as the
device bias is varied. In summary, developing a theory at
finite bias for a quantum shuttle is the outstanding theoretical
challenge. Finally, the heat bath consisting of an infinite set
of harmonic oscillators linearly coupled to the mechanical
degree of freedom is described with the Caldeira-Leggett
model33 in its Ohmic form.

Generalized master equation

For the description of the model we use the language of
quantum dissipative systems.33 As the system �or “device”�
we take the electronic states plus the one-dimensional oscil-
lator describing the center-of-mass motion of the central dot.
The electronic leads and the heat bath interacting with the
mechanical degree of freedom constitute the reservoirs. The
task is to integrate out the degrees of freedom of the reser-
voirs to end up with an equation of motion for the system
density operator. The derivation proceeds in two steps, first
integrating out the leads and then the heat bath in the weak
coupling limit to get the desired GME for the system density
operator. We remark that the assumed additivity of the two
heat baths should be proven; however, we are not aware of
any such proof.

As a specific example of an end result of this procedure,
we give the GME governing the system density operator in
the one-dot case, written here in a Liouvillean form

�̇�t� = L��t� = �Lcoh + Ldriv + Ldamp���t� , �2�

where the various superoperators Li, i=coh, driv, damp, are
defined as

Lcoh� =
1

i�
�Hosc + �0c0

†c0 − eExc0
†c0,�� , �3�

Ldriv� = −
�L

2
�c0c0

†e−2x/�� − 2c0
†e−x/��e−x/�c0

+ �e−2x/�c0c0
†� −

�R

2
�c0

†c0e2x/�� − 2c0ex/��ex/�c0
†

+ �e2x/�c0
†c0� , �4�

Ldamp� = −
i	

2�
�x,�p,��� −

	m�

�
�N̄ + 1/2��x,�x,��� . �5�

The physical meaning of some of the terms is of particular
interest. The term proportional to E is due to the electrostatic
force on an occupied �i.e., charged� dot. The exponential
dependence of the tunneling terms is clearly visible. The
damping of the oscillator cannot be described entirely satis-
factorily in the Markovian limit: one cannot simultaneously
achieve translational invariance, positivity of the density ma-
trix, and relaxation towards canonical equilibrium. The form
given above does not satisfy strict positivity; the quantitative
consequences of this shortcoming turned out to be
negligible.23 To proceed further, one considers the electronic
diagonal elements �00�t�= 	0���t��0� and �11�t�= 	1���t��1�,
where �1�=c0

†�0�. These objects are still full density matrices
in the phonon space and satisfy

�̇00�t� =
1

i�
�Hosc,�00�t�� −

�L

2
�e−2x/��00�t� + �00�t�e−2x/��

+ �Rex/��11�t�ex/� + Ldamp�00�t� ,

�6�

�̇11�t� =
1

i�
�Hosc − eEx,�11�t�� + �Le−x/��00�t�e−x/�

−
�R

2
�e2x/��11�t� + �11�t�e2x/�� + Ldamp�11�t� .

III. CURRENT AND NOISE

A. Analytical development

The current through the system is given by

Istat = e�LTrosc�e−2x/��00
stat� = e�RTrosc�e2x/��11

stat� . �7�

The trace is carried out over the oscillator basis and �nn
stat

= limt→��nn�t�. To find the stationary solution, one needs to
truncate the oscillator basis at some suitably large value N
�in practice, N may reach 100 before convergence is
achieved�; since the resulting linear system has dimensions
2N2
2N2 �single dot� or 10N2
10N2 �triple dot�, this be-
comes a critical issue. The method of solving this vast nu-
merical task is commented on below.

Let us next consider the calculation of noise. In quantum
optics one often resorts to a result known as the quantum
regression theorem; this allows the calculation of any multi-

FIG. 2. I-	 curve. The damping dependence of the stationary current
through the single-dot shuttle for different transfer rates and electric fields
parametrized by d=eE /m�2. Their values are d=0.5x0, �=0.05� �pluses;
corresponds to Fig. 3�, d=0.5x0, �=0.01� �circles�, d=0.0, �=0.05� �as-
terisks�, d=0.0, �=0.01� �crosses�. Other parameters are �=x0, T=0. The
current is in units of e� while 	 in �. �Reproduced from Ref. 23.�
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time correlation function of system operators. Unfortunately,
in NEMS this theorem can be applied only under very re-
stricted circumstances: it can be used to calculate the noise
�which is essentially the average of a product of current op-
erators� within the three-dot device25 �because the current

operators ÎLC and ÎRC operate within the system�, while it is
unapplicable for the single-dot case �and many other NEMS
systems as well� because there the current operators involve
operators belonging both to the baths �i.e., the electronic
leads� and the system. A more general method is thus called
for.

In order to compute the noise spectrum, we follow the
ideas of Gurvitz and Prager,34 and introduce number-
resolved density matrices �ii

�n�, where n is the number of elec-
trons tunneled into the right lead by time t. Obviously,
�ii�t�=
n�ii

�n��t�. The �ii
�n� obey

�̇00
�n��t� =

1

i�
�Hosc,�00

�n��t�� + Ldamp�00
�n��t�

−
�L

2
�e−2x/�,�00

�n��t�� + �Rex/��11
�n−1��t�ex/�,

�8�

�̇11
�n��t� =

1

i�
�Hosc − eEx,�11

�n��t�� + Ldamp�11
�n��t�

−
�R

2
�e2x/�,�11

�n��t�� + �Le−x/��00
�n��t�e−x/�,

with �11
�−1��t��0. The mean current and the zero-frequency

shot noise spectrum are given by35

I = �e
d

dt
n

nPn�t��
t→�

= �e

n

nṖn�t��
t→�

, �9�

S�0� = 2e2 d

dt�
n

n2Pn�t� − �

n

nPn�t��2��
t→�

, �10�

where Pn�t�=Trosc��00
�n��t�+�11

�n��t�� are the probabilities of
finding n electrons in the right lead in time span 0 to t, i.e.,
precisely the objects needed for the FCS discussed below.

We find I=
nnṖn�t�=�RTrosc�e2x/��11�t��, i.e., one recovers
the stationary current found above. In a similar fashion,


nn2Ṗn�t�=�RTrosc�e2x/��2
nn�11
�n��t�+�11�t���, whose large-

time asymptotics determines the shot noise according to �10�.
We have developed a generating function technique in Ref.
19 to extract this large-time limit. Here we skip the technical
details; the upshot is that the zero-frequency noise, and
thereby the Fano factor F�S�0� /2eI, can be expressed in
terms of the pseudoinverse of the Liouvillean �and the static
limit of the density matrix known already from the current
calculation�:

F = 1 −
2e�R

I
Trosc�e2x/�QL−1Q��Rex/��11

statex/�

0
��

11
� .

�11�

Here Q is a projection operator that projects away from the
stationary state for which the Liouvillean has the eigenvalue
zero. The crucial point is that the pseudoinverse R of the

Liouvillean, defined as QL−1Q�R, is tractable by similar
numerical methods as used in the evaluation of the current.
In our discussion of the full counting statistics given below,
we analyze a toy model to illustrate some properties of the
pseudoinverse R.

B. Comment on numerics: Some results

As mentioned above, the superoperator structure of the
Liouville equation leads to large matrices of the order of
N2
N2, where N is the number of low-energy states kept in
the calculation. A further complication arises from the fact
that the stationary limit corresponds to the zero eigenvalue of
the Liouvillean, L�=0, forcing one to deal with singular
matrices. The problems with the memory size can be circum-
vented by using iterative methods in which only LA for a
given A is needed �N
N numbers�, and one avoids the stor-
age of the full L �N2
N2 numbers�. Using an iterative
method raises the questions of convergence and the speed of
convergence. We found that the so-called Arnoldi iteration
technique was sufficient for our purposes �see Appendix A in
Ref. 25�, provided that one uses a suitable preconditioning.
While there exists a substantial empirical body of knowledge
of how to carry out the preconditioning, we are not aware of
a complete algorithm. As an example, when solving for the
pseudoinverse R, we used the inverse of the “Sylvester part”
L0 of L as preconditioner;26 finding the inverse of L0 is a
relatively fast procedure. When calculating the noise �which
amounts to solving an equation of the type Lx=b, where the
vector b belongs in the range of L�, we used the generalized
minimum residual method.36 Again, appropriate precondi-
tioning was crucial.

Figure 2 shows a set of current vs damping curves for
the single-dot shuttle. We draw attention to the following
features. As damping is decreased, the current increases, ap-
proaching asymptotically the value I=1/2��0.16, i.e., one
electron is transferred per cycle. In other words, this value of
the current indicates that the shuttling transition has taken
place, even in the quantum regime. The transition is not as
sharp as found in the classical case.4 For large values of
damping the current is much smaller and scales with the
tunneling rate �. Very interestingly, we see a sharp increase
in the current even without electric field E=0. Classically
this does not happen, and therefore we interpret this cross-
over of being due to quantum shot noise.

We have, in several occasions, promoted the use of
Wigner functions as an interpretative tool for the numerical
results obtained for the stationary density matrix. The
Wigner representation of the GME has also turned out to be
a useful starting point for further analytic work.26,29,37 These
phase-space representations have a simple form in the clas-
sical limit: the Wigner representation of a regularly moving
harmonic oscillator is an ellipse. On the other hand, irregular
motion under the influence of external noise gives rise to a
Gaussian probability distribution centered at the origin. The
charge resolved Wigner functions �n=0 corresponds to an
empty dot, while n=1 represents the occupied dot� are de-
fined as
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Wnn�X,P� = �
−�

� dy

2��
	X − �y/2���nn

stat�X + �y/2��exp�i
Py

�
� ,

�12�

and some representative results are given in Fig. 3. As ex-
pected, as damping is decreased, the fuzzy central spot
evolves into a ring. The finite thickness of the ring is due to
thermal noise, the randomness of the charge transport pro-
cesses, and the position-momentum uncertainty. The finger-
prints of shuttling are the asymmetric, banana-shaped areas
observed for weakest damping: here one observes a strong
correlation between the occupancy of the dot and the posi-
tion and momentum. Thus, there is a large probability to
have an occupied dot with a negative position coordinate and
positive velocity �the dot has been filled in the neighborhood
of the left contact�, while there is a large probability of hav-
ing an empty dot at positive x values and negative velocity,
i.e., on the return journey from the right contact. As the
system approaches the classical limit, the thickness of the
Wigner ring shrinks; this is illustrated in Fig. 4. As men-
tioned above, we expect that the noise of the quantum shuttle
yields additional information about the nature of the charge
transfer process. Figure 5 shows some of our numerical re-
sults. In the top panel, we see a relatively sharp crossover if

the tunneling length is larger than the length scale x0

=�� / �m��, i.e., as one approaches the classical limit. In the
bottom panel we show the Fano factor for the same param-
eters as in the top panel. One should note that a logarithmic
scale is used; thus, one observes �i� a huge enhancement at
the tunneling crossover, in particular, for parameters ap-
proaching the semiclassical limit and �ii� tiny Fano factors
below the shuttling crossover. Thus, even well in the quan-
tum regime shuttling is a highly ordered charge transfer pro-
cess.

Figure 6 shows the phase-space plot for the parameter
values indicated by the asterisk in Fig. 5. The interpretation
is very suggestive: for these parameters tunneling and shut-
tling coexist. Our numerics thus confirm the suggestion put
forward in the analytical study of Ref. 29. The large value of
the Fano factor can be understood as a slow switching pro-
cess between the two possible current channels �tunneling
and shuttling�. In the following section we elaborate this
point further.

FIG. 3. Phase space picture of the tunneling-to-shuttling crossover. The
respective rows show the Wigner distribution functions for the discharged
�W00�, charged �W11�, and both �Wtot� states of the oscillator in the phase
space �horizontal axis—coordinate in units of x0=�� /m�, vertical axis—
momentum in � /x0�. The values of the parameters are �=x0, T=0, d
=0.5x0, �=0.05�. The values of 	 are in units of �. The Wigner functions
are normalized within each column. �Reproduced from Ref. 23.�

FIG. 4. Transition from quantum limit to classical limit. The “quantum
thickness” of the Wigner ring shrinks and the radius increases, indicating
larger maximal velocity and oscillation amplitude. The parameters are �
=0.05�, �=x0 �left�; �=0.05�, �=2x0 �middle�; �=0.01�, �=2x0 �right�.

FIG. 5. Current I and Fano factor F vs damping 	. The 	 dependence of I
�upper panel� and F on log scale �lower panel� for different transfer rates �
and tunneling lengths �. The parameters are �=x0, �=0.01� �full�; �=x0,
�=0.05� �long dashes�; �=2x0, �=0.01� �short dashes�; �=2x0, �

=0.05� �dots� with x0=�� /m�. Other parameters are eE /m�2=0.5x0 and
T=0. The current is in units of e� while 	 in units of �. The asterisk defines
the parameters of Wigner distributions in Fig. 6. �Reproduced from Ref. 19.�

FIG. 6. Phase space picture of the shuttle around the transition where the
shuttling and tunneling regimes coexist. The respective rows show the
Wigner distribution functions for the discharged �W00�, charged �W11�, and
both �Wtot=W00+W11� states of the oscillator in the phase space �horizontal
axis—coordinate in units of x0=�� /m�, vertical axis—momentum in � /x0�.
The values of the parameters are �=2x0, eE /m�2=0.5x0, 	=0.029�, �
=0.01�, and T=0.
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IV. FULL COUNTING STATISTICS

A. Calculational procedure

We begin by introducing some notation. We recall that
the Liouvillean, which is a non-Hermitian operator, has a
single eigenvalue equal to zero with �̂stat being the corre-
sponding �normalized and unique� right eigenvector, we de-
note this eigenvector by �0��. The corresponding left eigen-

vector is the identity operator 1̂ which we denote by 		0̃�, and

we have 		0̃ �0���Tr�1̂†�̂stat�=1. The pair of eigenvectors al-

lows us to define the complementary projectors P��0��		0̃�
and Q�1−P obeying the relations PL=LP=0 and QLQ
=L. We will also need the pseudoinverse of the Liouvillean
R�QL−1Q, which is well defined, since the inversion is
performed only in the subspace spanned by Q, where L is
regular. Rather than attempting to calculate the complete
probability distribution Pn�t�=Tr��̂�n��t�� directly, it turns out
to be easier to evaluate the cumulant generating function
S�t ,��:

eS�t,�� = 

n=−�

�

Pn�t�ein�. �13�

From S�t ,�� we find the mth cumulant of the charge distri-
bution by taking the mth derivative with respect to the count-
ing field � at �=0,

		nm���t� = � �mS

��i��m�
�=0

, �14�

and from the knowledge of all cumulants we can reconstruct
Pn�t�. The cumulants of the current in the stationary limit
t→� are given by the time derivative of the charge cumu-
lants:

		Im�� = � d

dt
		nm���t��

t→�

. �15�

The first two current cumulants give the average current run-
ning through the system and the zero-frequency current
noise, respectively. We have recently developed a systematic
perturbation theory to calculate the higher cumulants,22 and
we just quote the final results

		I�� = 		0̃�I�0�� ,

		I2�� = 		0̃�J�0�� − 2		0̃�IRI�0�� , �16�

		I3�� = 		0̃�I�0�� − 3		0̃�IRJ + JRI�0��

− 6		0̃�IR�RIP − IR�I�0�� ,

where

I = I+ − I−, �17�

J = I+ + I−. �18�

The explicit expressions for the current superoperators I±

depend on the problem at hand; two examples are given in
Ref. 22 �see also the analytic toy model discussed below�.

We emphasize the utility of these formulas: they imply that
once the hard numerical problems with the stationary case
are solved, the higher cumulants are essentially immediately
accessible. Using the systematic perturbation theory devel-
oped in Ref. 22 algebraic formulas for the fourth, fifth, etc.,
cumulant can be generated with computer routines perform-
ing symbolic manipulations. In Fig. 7, we show numerical
results for the first three cumulants for the single-dot shuttle.

B. Toy model

The general formulation for calculation of higher cumu-
lants given above is very practical also in analytic calcula-
tions. Here we illustrate it by considering a toy model, for
which the current and noise are well known, while the third
cumulant cannot be considered as a standard result. Specifi-
cally, we consider a two-level system, whose occupation
probabilities obey the master equation �p= �p0 p1�T�

ṗ = Lp = �− �L �R

�L − �R.
�p . �19�

The relevance of this model to the shuttling dynamics is
based on the fact that in the coexistence regime there are two
“states”: the incoherent tunneling current channel �reflected
by the central spot in the Wigner function description� and
the orderly shuttling channel �reflected� by the ring, and that
the system can be visualized as fluctuating between these
two states. The bare two-level system, as discussed in this
section, needs a slight modification to take into account that
in the coexistence regime one deals with current channels
and not states, and further discussion can be found in Ref.
22, see also Ref. 38 for a related model. The Liouvillean of
Eq. �19� has the following right and left null vectors:

�0�� =
1

�L + �R
��R

�L
�, 		0̃� = �1 1 � , �20�

which satisfy L�0��=0= 		0̃�L and 		0̃ �0��=1, as is readily
verified. We can immediately form the projectors P and Q:

P = �0��		0̃� =
1

�R + �L
��R �R

�L �L
� ,

�21�

Q = 1 − P =
1

�R + �L
� �L − �R

− �L �R
� .

We also record the current superoperator

FIG. 7. The first three cumulants for the one-dot shuttle as a function of the
damping 	. The parameters are �=1.5x0 and d=eE /m�2=0.5x0.
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I0R = �0 �R

0 0
� . �22�

Next, we need the eigenvector ��� of L which does not
belong to the null space �here, the situation is quite simple
because the full problem is two dimensional with a one di-
mensional null space�, and the associated eigenvalue �. We
readily find

� = − ��R + �L�, ��� = � 1

− 1
� ,

�23�

		̃� =
1

�R + �L
��L − �R � ,

and can thus compute the pseudoinverse R,

R = QL−1Q =
1

�

���		̃� = −
1

��R + �L�2� �L − �R

− �L �R
�

=
1

�

Q . �24�

With these results at hand, the evaluation of various cumu-
lants is reduced to simple matrix multiplications, and we
quote the results

		I�� =
�L�R

�L + �R
, �25�

		I2�� =
�R

2 + �L
2

��R + �L�2 		I�� , �26�

		I3�� =
�R

4 − 2�R
3�L + 6�R

2�L
2 − 2�R�L

3 + �L
4

��R + �L�2 		I�� . �27�

These results have been reported in the literature �see, e.g.,
Refs. 12 and 39; however, the derivation presented here is
quite different. We believe that the above method of calcula-
tion can be very useful in extending several previous results,
such as those obtained in by Kießlich et al.40

C. Experimental status

To summarize the experimental status very shortly, we
do not believe that the shuttling transition has been observed
so far. Having stated this negative conclusion, we hasten to
point out that we think that the experimental situation is very
promising, and that a crucial experiment could be just behind
the corner.

Two key experiments have been reported, which contain
several important ingredients. In the experiment of Park
et al.,5 a C60 molecule was placed in a break junction, and
the current-voltage characteristics showed clear indications
of effects due to vibrational quanta. We believe that the ob-
served values of the current are too small to be attributed to
shuttling �recall that the shuttling current has the universal
value of 1 /2��, and that the system is in the tunneling limit.
In the experiment of Erbe et al.,41 the system was driven:
indeed electrons were shuttled, but the experiment was not
designed to observe the shuttling transition as a function of a

control parameter. Our optimism is based on a number of
new structures that are currently being explored in the litera-
ture, and in particular we find the structures of Scheible and
Blick,42 where a soft silicon pillar forms the movable part,
very promising. We also believe that the theoretical methods
outlined above are suitable for modeling quantitatively the
forthcoming experiments.

V. CONCLUSION

We have discussed at length some properties of a nano-
mechanical device, the quantum shuttle, which we believe
can be an important component in future applications, for
example, measurements of very small displacements. While
the quantitative results of the present work apply to very
specific and strongly idealized models, we believe that many
of the phenomena we address are generic, and will be ob-
served in near future. One of the central messages we want to
pass is that the fluctuation properties of these devices contain
a wealth of information, and that this information may be
essential in identifying the key charge transfer processes in
these devices.
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