499 research outputs found

    Quantum theory of shuttling instability in a movable quantum dot array

    Full text link
    We study the shuttling instability in an array of three quantum dots the central one of which is movable. We extend the results by Armour and MacKinnon on this problem to a broader parameter regime. The results obtained by an efficient numerical method are interpreted directly using the Wigner distributions. We emphasize that the instability should be viewed as a crossover phenomenon rather than a clear-cut transition.Comment: 4 pages, 2 figures, presented at HCIS-13, Modena, July 200

    Ordered Array of Single Au Adatoms with Remarkable Thermal Stability: Au/Fe3O4(001)

    Full text link
    We present a Scanning Tunneling Microscopy (STM) investigation of gold deposited at the magnetite Fe3O4(001) surface at room temperature. This surface forms a reconstruction with (\surd2\times\surd2)R45{\deg} symmetry, where pairs of Fe and neighboring O ions are slightly displaced laterally, forming undulating rows with 'narrow' and 'wide' adsorption sites. At fractional monolayer coverages, single Au adatoms adsorb exclusively at the narrow sites, with no significant sintering up to annealing temperatures of 400 {\deg}C. The strong preference for this site is possibly related to charge and orbital ordering within the first subsurface layer of the reconstructed Fe3O4(001) surface. Because of their high thermal stability, the ordered Au atoms at Fe3O4(001)- (\surd2\times\surd2)R45{\deg} could provide useful for probing the chemical reactivity of single atomic species.Comment: Duplicate entry, newer version at 1205.0915. http://arxiv.org/abs/1205.091

    Finding the optimum activation energy in DNA breathing dynamics: A Simulated Annealing approach

    Full text link
    We demonstrate how the stochastic global optimization scheme of Simulated Annealing can be used to evaluate optimum parameters in the problem of DNA breathing dynamics. The breathing dynamics is followed in accordance with the stochastic Gillespie scheme with the denaturation zones in double stranded DNA studied as a single molecule time series. Simulated Annealing is used to find the optimum value of the activation energy for which the equilibrium bubble size distribution matches with a given value. It is demonstrated that the method overcomes even large noise in the input surrogate data.Comment: 9 pages, 4 figures, iop article package include

    Inviscid incompressible limits of the full Navier-Stokes-Fourier system

    Full text link
    We consider the full Navier-Stokes-Fourier system in the singular limit for the small Mach and large Reynolds and Peclet numbers, with ill prepared initial data on the three dimensional Euclidean space. The Euler-Boussinesq approximation is identified as the limit system

    Analytical calculation of the excess current in the OTBK theory

    Full text link
    We present an analytical derivation of the excess current in Josephson junctions within the Octavio-Tinkham-Blonder-Klapwijk theory for both symmetric and asymmetric barrier strengths. We confirm the result found numerically by Flensberg et al. for equal barriers [Phys. Rev. B 38, 8707 (1988)], including the prediction of negative excess current for low transparencies, and we generalize it for differing barriers. Our analytical formulae provide for convenient fitting of experimental data, also in the less studied, but practically relevant case of the barrier asymmetry.Comment: 13 pages, 3 figures, submitted to Superconductor Science and Technolog

    Cryogenic micro-calorimeters for mass spectrometric identification of neutral molecules and molecular fragments

    Get PDF
    We have systematically investigated the energy resolution of a magnetic micro-calorimeter (MMC) for atomic and molecular projectiles at impact energies ranging from E≈13E\approx13 to 150 keV. For atoms we obtained absolute energy resolutions down to ΔE≈120\Delta E \approx 120 eV and relative energy resolutions down to ΔE/E≈10−3\Delta E/E\approx10^{-3}. We also studied in detail the MMC energy-response function to molecular projectiles of up to mass 56 u. We have demonstrated the capability of identifying neutral fragmentation products of these molecules by calorimetric mass spectrometry. We have modeled the MMC energy-response function for molecular projectiles and conclude that backscattering is the dominant source of the energy spread at the impact energies investigated. We have successfully demonstrated the use of a detector absorber coating to suppress such spreads. We briefly outline the use of MMC detectors in experiments on gas-phase collision reactions with neutral products. Our findings are of general interest for mass spectrometric techniques, particularly for those desiring to make neutral-particle mass measurements

    Absolute rate coefficients for photorecombination and electron-impact ionization of magnesium-like iron ions from measurements at a heavy-ion storage ring

    Full text link
    Rate coefficients for photorecombination (PR) and cross sections for electron-impact ionization (EII) of Fe14+^{14+} forming Fe13+^{13+} and Fe15+^{15+}, respectively, have been measured by employing the electron-ion merged-beams technique at a heavy-ion storage ring. Rate coefficients for PR and EII of Fe14+^{14+} ions in a plasma are derived from the experimental measurements. Simple parametrizations of the experimentally derived plasma rate coefficients are provided for use in the modeling of photoionized and collisionally ionized plasmas. In the temperature ranges where Fe14+^{14+} is expected to form in such plasmas the latest theoretical rate coefficients of Altun et al. [Astron. Astrophys. 474, 1051 (2007)] for PR and of Dere [Astron. Astrophys. 466, 771 (2007)] for EII agree with the experimental results to within the experimental uncertainties. Common features in the PR and EII resonance structures are identified and discussed.Comment: 12 pages, 6 figures, 3 tables, submitted for publication to Physical Review

    Background Geometry in Gauge Gravitation Theory

    Get PDF
    Dirac fermion fields are responsible for spontaneous symmetry breaking in gauge gravitation theory because the spin structure associated with a tetrad field is not preserved under general covariant transformations. Two solutions of this problem can be suggested. (i) There exists the universal spin structure S→XS\to X such that any spin structure Sh→XS^h\to X associated with a tetrad field hh is a subbundle of the bundle S→XS\to X. In this model, gravitational fields correspond to different tetrad (or metric) fields. (ii) A background tetrad field hh and the associated spin structure ShS^h are fixed, while gravitational fields are identified with additional tensor fields q^\la{}_\m describing deviations \wt h^\la_a=q^\la{}_\m h^\m_a of hh. One can think of \wt h as being effective tetrad fields. We show that there exist gauge transformations which keep the background tetrad field hh and act on the effective fields by the general covariant transformation law. We come to Logunov's Relativistic Theory of Gravity generalized to dynamic connections and fermion fields.Comment: 12 pages, LaTeX, no figure

    Kinetic and Mechanistic Study of Glucose Isomerization Using Homogeneous Organic Brønsted Base Catalysts in Water

    Get PDF
    The isomerization of glucose to fructose represents a key intermediate step in the conversion of cellulosic biomass to fuels and renewable platform chemicals, namely, 5-hydroxymethyl furfural (HMF), 2,5-furandicarboxylic acid (FDCA), and levulinic acid (LA). Although both Lewis acids and Brønsted bases catalyze this reaction, the base-catalyzed pathway received significantly less attention due to its lower selectivity to fructose and the poor yields achieved (\u3c10%). However, we recently demonstrated that homogeneous organic Brønsted bases present a similar performance (∼31% yield) as Sn-containing beta zeolite, a reference catalyst for this reaction. Herein, we report on the first extensive kinetic and mechanistic study on the organic Brønsted base-catalyzed isomerization of glucose to fructose. Specifically, we combine kinetic experiments performed over a broad range of conditions (temperature: 80–120 °C; pH 9.5–11.5; reactant: glucose, fructose) with isotopic studies and in situ 1H NMR spectroscopy. Pathways leading to isomerization and degradation of the monosaccharides have been identified through careful experimentation and comparison with previously published data. Kinetic isotope effect experiments were carried out with labeled glucose to validate the rate-limiting step. The ex situ characterization of the reaction products was confirmed using in situ 1H NMR studies. It is shown that unimolecular (thermal) and bimolecular (alkaline) degradation of fructose can be minimized independently by carefully controlling the reaction conditions. Fructose was produced with 32% yield and 64% selectivity within 7 min

    Effect of bacteria on pre-formed and nascent biofilms of Irpex lacteus

    Get PDF
    Fungal biofilms are applicable to removal of pollutants in biofilters in nonsterile conditions but the bacterial effect is poorly known. Interactions between fungal and bacterial organisms were investigated in preformed or nascent biofilms and the enzyme activities and degradation capacity measured. Different effects of Escherichia coli and Pseudomonas aeruginosa on degradation of an anthraquinone dye by fungal biofilms colonizing polyurethane foam (PUF) in the presence of bacteria (104-106 CFU) at pH 4.5 and 6 were observed in a 10-day experiment: the former bacterium inhibited degradation whereas the latter not. Production of peroxidases but not of laccase was reduced; the bacteria could not remove the dye. The fungal biomass amount colonizing PUF was unaffected by bacteria, E. coli and P. aeruginosa increased their respective counts by 1 to 3 and 0 to 2 orders of magnitude. In contrast, the degradation capacity (85-95% decolorization rate at pH 5.5) of preformed 1-week-old fungal biofilms colonizing PUF or pinewood was not affected by the added 106 CFU of E.coli in a 4-week experiment. The fungal growth was reduced 1.4-fold and bacterial counts increased up to 2-fold compared to bacterial controls. The results demonstrate a significant resistance of preformed I. lacteus biofilms to bacterial stress which is important for practical application.The work was supported by the project IAAX00200901
    • …
    corecore