204 research outputs found

    Whole-exome sequencing in the differential diagnosis of primary adrenal insufficiency in children

    Get PDF
    Adrenal insufficiency is a rare, but potentially fatal medical condition. In children, the cause is most commonly congenital and in recent years a growing number of causative gene mutations have been identified resulting in a myriad of syndromes that share adrenal insufficiency as one of the main characteristics. The evolution of adrenal insufficiency is dependent on the variant and the particular gene affected, meaning that rapid and accurate diagnosis is imperative for effective treatment of the patient. Common practice is for candidate genes to be sequenced individually, which is a time-consuming process and complicated by overlapping clinical phenotypes. However, with the availability, and increasing cost effectiveness of whole-exome sequencing, there is the potential for this to become a powerful diagnostic tool. Here, we report the results of whole-exome sequencing of 43 patients referred to us with a diagnosis of familial glucocorticoid deficiency (FGD) who were mutation negative for MC2R, MRAP, and STAR the most commonly mutated genes in FGD. WES provided a rapid genetic diagnosis in 17/43 sequenced patients, for the remaining 60% the gene defect may be within intronic/regulatory regions not covered by WES or may be in gene(s) representing novel etiologies. The diagnosis of isolated or familial glucocorticoid deficiency was only confirmed in 3 of the 17 patients, other genetic diagnoses were adrenal hypo- and hyperplasia, Triple A, and autoimmune polyendocrinopathy syndrome type I, emphasizing both the difficulty of phenotypically distinguishing between disorders of PAI and the utility of WES as a tool to achieve thi

    ACTH signalling and adrenal development: lessons from mouse models

    Get PDF
    The melanocortin-2-receptor (MC2R), also known as the ACTH receptor, is a critical component of the hypothalamic–pituitary–adrenal axis. The importance of MC2R in adrenal physiology is exemplified by the condition familial glucocorticoid deficiency (FGD), a potentially fatal disease characterised by isolated cortisol deficiency. MC2R mutations cause ~25% of cases. The discovery of a MC2R accessory protein MRAP, mutations of which account for ~20% of FGD, has provided insight into MC2R trafficking and signalling. MRAP is a single transmembrane domain accessory protein highly expressed in the adrenal gland and essential for MC2R expression and function. Mouse models helped elucidate the action of ACTH. The Mc2r-knockout (Mc2r−/−) mice was the first mouse model developed to have adrenal insufficiency with deficiencies in glucocorticoid, mineralocorticoid and catecholamines. We recently reported the generation of the Mrap−/− mice which better mimics the human FGD phenotype with isolated glucocorticoid deficiency alone. The adrenal glands of adult Mrap−/− mice were grossly dysmorphic with a thickened capsule, deranged zonation and deranged WNT4/beta-catenin and sonic hedgehog (SHH) pathway signalling. Collectively, these mouse models of FGD highlight the importance of ACTH and MRAP in adrenal progenitor cell regulation, cortex maintenance and zonation

    MRAP deficiency impairs adrenal progenitor cell differentiation and gland zonation

    Get PDF
    Melanocortin 2 receptor accessory protein (MRAP) is a single transmembrane domain accessory protein and a critical component of the hypothamo-pituitary-adrenal axis. MRAP is highly expressed in the adrenal gland and is essential for adrenocorticotropin hormone (ACTH) receptor expression and function. Human loss-of-function mutations in MRAP cause familial glucocorticoid (GC) deficiency (FGD) type 2 (FGD2), whereby the adrenal gland fails to respond to ACTH and to produce cortisol. In this study, we generated Mrap-null mice to study the function of MRAP in vivo. We found that the vast majority of Mrap−/− mice died at birth but could be rescued by administration of corticosterone to pregnant dams. Surviving Mrap−/− mice developed isolated GC deficiency with normal mineralocorticoid and catecholamine production, recapitulating FGD2. The adrenal glands of adult Mrap−/− mice were small, with grossly impaired adrenal capsular morphology and cortex zonation. Progenitor cell differentiation was significantly impaired, with dysregulation of WNT4/β-catenin and sonic hedgehog pathways. These data demonstrate the roles of MRAP in both steroidogenesis and the regulation of adrenal cortex zonation. This is the first mouse model of isolated GC deficiency and reveals the role of MRAP in adrenal progenitor cell regulation and cortex zonatio

    NNT pseudoexon activation as a novel mechanism for disease in two siblings with familial glucocorticoid deficiency

    Get PDF
    CONTEXT: Intronic DNA frequently encodes potential exonic sequences called pseudoexons. In recent years, mutations resulting in aberrant pseudoexon inclusion have been increasingly recognized to cause disease. OBJECTIVES: To find the genetic cause of familial glucocorticoid deficiency (FGD) in two siblings. PATIENTS: The proband and his affected sibling, from nonconsanguineous parents of East Asian and South African origin, were diagnosed with FGD at the ages of 21 and 8 months, respectively. DESIGN: Whole exome sequencing was performed on genomic DNA (gDNA) of the siblings. Variants in genes known to cause FGD were assessed for causality. Further analysis of gDNA and cDNA was performed by PCR/RT-PCR followed by automated Sanger sequencing. RESULTS: Whole exome sequencing identified a single, novel heterozygous variant (p.Arg71*) in nicotinamide nucleotide transhydrogenase (NNT) in both affected individuals. Follow-up cDNA analysis in the proband identified a 69-bp pseudoexon inclusion event, and Sanger sequencing of his gDNA identified a 4-bp duplication responsible for its activation. The variants segregated with the disease: p.Arg71* was inherited from the mother, the pseudoexon change was inherited from the father, and an unaffected sibling had inherited only the p.Arg71* variant. CONCLUSIONS: FGD in these siblings is caused by compound heterozygous mutations in NNT; one causing pseudoexon inclusion in combination with another leading to Arg71*. Discovery of this pseudoexon activation mutation highlights the importance of identifying sequence changes in introns by cDNA analysis. The clinical implications of these findings include: facilitation of antenatal genetic diagnosis, early institution of potentially lifesaving therapy, and the possibility of preventative or curative interventio

    MRAP deficiency impairs adrenal progenitor cell differentiation and gland zonation.

    Get PDF
    Melanocortin 2 receptor accessory protein (MRAP) is a single transmembrane domain accessory protein and a critical component of the hypothamo-pituitary-adrenal axis. MRAP is highly expressed in the adrenal gland and is essential for adrenocorticotropin hormone (ACTH) receptor expression and function. Human loss-of-function mutations in MRAP cause familial glucocorticoid (GC) deficiency (FGD) type 2 (FGD2), whereby the adrenal gland fails to respond to ACTH and to produce cortisol. In this study, we generated Mrap-null mice to study the function of MRAP in vivo. We found that the vast majority of Mrap-/- mice died at birth but could be rescued by administration of corticosterone to pregnant dams. Surviving Mrap-/- mice developed isolated GC deficiency with normal mineralocorticoid and catecholamine production, recapitulating FGD2. The adrenal glands of adult Mrap-/- mice were small, with grossly impaired adrenal capsular morphology and cortex zonation. Progenitor cell differentiation was significantly impaired, with dysregulation of WNT4/β-catenin and sonic hedgehog pathways. These data demonstrate the roles of MRAP in both steroidogenesis and the regulation of adrenal cortex zonation. This is the first mouse model of isolated GC deficiency and reveals the role of MRAP in adrenal progenitor cell regulation and cortex zonation.-Novoselova, T. V., Hussain, M., King, P. J., Guasti, L., Metherell, L. A., Charalambous, M., Clark, A. J. L., Chan, L. F. MRAP deficiency impairs adrenal progenitor cell differentiation and gland zonation

    DNA markers in oat breeding for crown rust resistance (a review)

    Get PDF
    Crown rust is the most harmful disease of oat (Avena sativa L.) around the world. The purpose of this review is to analyze and generalize the available information about DNA markers developed for oat breeding for resistance to crown rust. The review reveals the mechanisms of the A. sativa resistance to the fungus Puccinia coronata Corda f. sp. avenae Erikss. which causes crown rust disease. Special attention is paid to the race-specific resistance caused by the action of Pc genes and the nonspecific resistance controlled mainly by the loci of quantitative traits. Strategies for creating resistant genotypes and the role of molecular markers in oat breeding for crown rust resistance are discussed. Currently, research is focused mainly on the search for and development of molecular markers related to the oat race-specific resistance to P. coronata.The article presents the technological advantages and disadvantages of the existing DNA markers. KASP, TaqMan and HRM markers are currently the most promising technologies for identifying crown rust resistance genes. The validated SCAR and STS markers for the Pc39, Pc68, Pc91, Pc94 genes are recommended as the most available for implementation in practical oat breeding. The results of recent studies on identifying loci of nonspecific resistance to P. coronata are also presented. In general, the use of DNA markers has significant potential for creating oat genotypes resistant to crown rust under present-day conditions. DNA markers of various types are recommended for practical use, in particular for pyramiding genes and increasing the resistance period of new cultivars. Introduction of DNA markers into oat breeding will increase with the growth of molecular genetic data and the improvement of technologies for identifying genes and loci associated with both race-specific and nonspecific resistance of oat to P. coronata

    Loss of Mrap2 is associated with Sim1 deficiency and increased circulating cholesterol

    Get PDF
    Melanocortin receptor accessory protein 2 (MRAP2) is a transmembrane accessory protein predominantly expressed in the brain. Both global and brain-specific deletion of Mrap2 in mice results in severe obesity. Loss-of-function MRAP2 mutations have also been associated with obesity in humans. Although MRAP2 has been shown to interact with MC4R, a G protein-coupled receptor with an established role in energy homeostasis, appetite regulation and lipid metabolism, the mechanisms through which loss of MRAP2 causes obesity remains uncertain. In this study, we used two independently derived lines of Mrap2 deficient mice (Mrap2tm1a/tm1a) to further study the role of Mrap2 in the regulation of energy balance and peripheral lipid metabolism. Mrap2tm1a/tm1a mice have a significant increase in body weight, with increased fat and lean mass, but without detectable changes in food intake or energy expenditure. Transcriptomic analysis showed significantly decreased expression of Sim1, Trh, Oxt and Crh within the hypothalamic paraventricular nucleus of Mrap2tm1a/tm1a mice. Circulating levels of both high-density lipoprotein and low-density lipoprotein were significantly increased in Mrap2 deficient mice. Taken together, these data corroborate the role of MRAP2 in metabolic regulation and indicate that, at least in part, this may be due to defective central melanocortin signallin

    Oncometabolite induced primary cilia loss in pheochromocytoma

    Get PDF
    Primary cilia are sensory organelles involved in regulation of cellular signaling. Cilia loss is frequently observed in tumors; yet, the responsible mechanisms and consequences for tumorigenesis remain unclear. We demonstrate that cilia structure and function is disrupted in human pheochromocytomas – endocrine tumors of the adrenal medulla. This is concomitant with transcriptional changes within cilia-mediated signaling pathways that are associated with tumorigenesis generally and pheochromocytomas specifically. Importantly, cilia loss was most dramatic in patients with germline mutations in the pseudohypoxia-linked genes SDHx and VHL. Using a pheochromocytoma cell line derived from rat, we show that hypoxia and oncometabolite-induced pseudohypoxia are key drivers of cilia loss and identify that this is dependent on activation of an Aurora-A/HDAC6 cilia resorption pathway. We also show cilia loss drives dramatic transcriptional changes associated with proliferation and tumorigenesis. Our data provide evidence for primary cilia dysfunction contributing to pathogenesis of pheochromocytoma by a hypoxic/pseudohypoxic mechanism and implicates oncometabolites as ciliary regulators. This is important as pheochromocytomas can cause mortality by mechanisms including catecholamine production and malignant transformation, while hypoxia is a general feature of solid tumors. Moreover, pseudohypoxia-induced cilia resorption can be pharmacologically inhibited, suggesting potential for therapeutic intervention

    Multi-omic profiling reveals the ataxia protein sacsin is required for integrin trafficking and synaptic organization

    Get PDF
    Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is a childhood-onset cerebellar ataxia caused by mutations in SACS, which encodes the protein sacsin. Cellular ARSACS phenotypes include mitochondrial dysfunction, intermediate filament disorganization, and progressive death of cerebellar Purkinje neurons. It is unclear why the loss of sacsin causes these deficits or why they manifest as cerebellar ataxia. Here, we perform multi-omic profiling in sacsin knockout (KO) cells and identify alterations in microtubule dynamics and mislocalization of focal adhesion (FA) proteins, including multiple integrins. Deficits in FA structure, signaling, and function can be rescued by targeting PTEN, a negative regulator of FA signaling. ARSACS mice possess mislocalization of ITGA1 in Purkinje neurons and synaptic disorganization in the deep cerebellar nucleus (DCN). The sacsin interactome reveals that sacsin regulates interactions between cytoskeletal and synaptic adhesion proteins. Our findings suggest that disrupted trafficking of synaptic adhesion proteins is a causal molecular deficit in ARSACS

    Cluster-Management as a Technology for Increasing the Efficiency of Territory Resource Exploitation in a Region

    Get PDF
    The topicality of cluster formation and their management is determined by the general ways of economic upswing at the present stage of developing Russia. It also lies in developing a partnership with the state, economy and science. A cluster serves as a paradigm under which the general output, beginning with its development, initial production work and ending with its sale, follows in the single chain order. In the modern market environment of functioning and development the national and regional economy everything is largely caused by the regularities of the global processes, which are determined as both the new world economic ties formation and the specific status definition of a certain state, region and enterprise in the structure of world economy. The economic integration can be considered as one of the main components of globalization. Any high-organized system seeks for strengthening its integrity objectively, for there are no specific goal, structuring and hierarchical pattern, distinguishing the system from the simple set of any things and phenomena between its forming elements when consolidating the ties and relations. Consolidating economic entities, strengthening their interactions and developing the economic and social relations between them are defined as an economic integration (the word “integer” from Latin means “whole”, “unitary”). Keywords: cluster, cluster management, territorial production cluster (TPC), globalization, innovations, technological park JEL Classifications: P25, P28, R1, R1
    corecore