JCEM ONLINE

Advances in Genetics

NNT Pseudoexon Activation as a Novel Mechanism
for Disease in Two Siblings With Familial
Glucocorticoid Deficiency

Tatiana V. Novoselova, Shoshana R. Rath, Karen Carpenter, Nicholas Pachter,
Jan E. Dickinson, Glynis Price, Li F. Chan, Catherine S. Choong,*

and Louise A. Metherell*

Centre for Endocrinology (T.V.N., L.F.C., L. A.M.), William Harvey Research Institute, John Vane Science
Centre, Queen Mary, University of London, London, EC1M 6BQ, United Kingdom; Department of
Endocrinology (S.R.R., G.P., C.S.C.), Princess Margaret Hospital, Child and Adolescent Services, Subiaco,
Perth, Western Australia 6008; Department of Diagnostic Genomics (K.C.), PathWest Laboratory Medicine,
Nedlands, Western Australia 6009; Genetic Services of Western Australia (N.P.), King Edward Memorial
Hospital, Subiaco, Western Australia 6008; and School of Pediatrics and Child Health (S.R.R., N.P., C.S.C.),
and School of Women's and Infants’ Health (J.E.D.), University of Western Australia, Perth, Australia 6009

Context: Intronic DNA frequently encodes potential exonic sequences called pseudoexons. In re-
cent years, mutations resulting in aberrant pseudoexon inclusion have been increasingly recog-

nized to cause disease.

Objectives: To find the genetic cause of familial glucocorticoid deficiency (FGD) in two siblings.

Patients: The proband and his affected sibling, from nonconsanguineous parents of East Asian and
South African origin, were diagnosed with FGD at the ages of 21 and 8 months, respectively.

Design: Whole exome sequencing was performed on genomic DNA (gDNA) of the siblings. Variants
in genes known to cause FGD were assessed for causality. Further analysis of gDNA and ¢cDNA was
performed by PCR/RT-PCR followed by automated Sanger sequencing.

Results: Whole exome sequencing identified a single, novel heterozygous variant (p.Arg71%*) in
nicotinamide nucleotide transhydrogenase (NNT) in both affected individuals. Follow-up cDNA
analysis in the proband identified a 69-bp pseudoexon inclusion event, and Sanger sequencing of
his gDNA identified a 4-bp duplication responsible for its activation. The variants segregated with
the disease: p.Arg71* was inherited from the mother, the pseudoexon change was inherited from
the father, and an unaffected sibling had inherited only the p.Arg71* variant.

Conclusions: FGD in these siblings is caused by compound heterozygous mutations in NNT; one
causing pseudoexon inclusion in combination with another leading to Arg71*. Discovery of this
pseudoexon activation mutation highlights the importance of identifying sequence changes in
introns by cDNA analysis. The clinical implications of these findings include: facilitation of antenatal
genetic diagnosis, early institution of potentially lifesaving therapy, and the possibility of preven-
tative or curative intervention. (J Clin Endocrinol Metab 100: E350-E354, 2015)
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icotinamide nucleotide transhydrogenase (NNT) is a
highly conserved gene, coding for a mitochondrial
protein that protects cells from oxidative stress. Mutations
in NNT may result in increased rates of cellular apoptosis
and therefore dysfunction of the affected tissue. Although
this protein is ubiquitously expressed in human tissues,
mutations are to date associated primarily with adrenal
insufficiency (1) and have previously been associated with
familial glucocorticoid deficiency (FGD). Some mouse
models have detected impaired insulin secretion and glu-
cose intolerance due to oxidative stress on pancreatic B
cells (2), but this has not been described in humans. FGD
is characterized by isolated glucocorticoid deficiency due
to the failure of the adrenal cortex to respond to ACTH
(reviewed in Ref. 3). Patients with FGD generally present
with Addisonian symptoms, including hyperpigmentation
of skin and mucous membranes, with the important dis-
tinction that mineralocorticoid production is preserved
(3). FGD has been associated with mutations in seven
genes: MC2R, MRAP, STAR, CYP11A1, NNT, MCMA4,
and TXNRD?2 (3, 4). Most commonly (50% of cases),
MC2R and MRAP defects are responsible.

To identify and join exons (the DNA sequences that
code for proteins), the splicing machinery must recognize
and differentiate noncoding introns from exons and ex-
clude them from pre-mRNA (5). Aberrant splicing events
are commonly recognized in disease states, but these usu-
ally occur when the consensus sequences flanking exons
are altered (6). Introns often contain sequences similar to
exons with canonical 5" and 3’ splice sites surrounded by
typical flanking regions (7). However, these are ignored by
the cellular splicing machinery and not incorporated into
mature mRNA. They are therefore termed pseudoexons
(8). In some genes, like human HPRT, pseudoexons out-
number exons by as many as 10:1 (9). This phenomenon
has mostly been studied in relation to splicing regulation
mechanisms, but recently the importance of pseudoexons
has been re-evaluated as mutations resulting in aberrant
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Figure 1. A, Pedigree of FGD family, filled symbols representing affected individuals. B, Upper
panel, proband I1:2 (on the right) with his unaffected sibling II:1. Lower panel, note the increased

skin and gum pigmentation of the proband.
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pseudoexon inclusion have been found to be disease caus-
ing in more than 50 genes (10). Most pathological pseu-
doexon inclusion events originate from the creation of a
new donor or acceptor splice site within an intronic se-
quence, but some alter splice regulatory elements as pre-
viously described by our group in the GH receptor (11).
Here we demonstrate that compound heterozygosity for a
pseudoexon activation event, together with a stop-gain
mutation in NNT, results in FGD in two siblings.

Patients and Methods

The proband (Figure 1A, II:2) was born by normal vaginal de-
livery after an uneventful pregnancy with a birth weight of
3130 g. He had an unremarkable first year of life, attaining de-
velopmental milestones appropriately, although his mother
commented retrospectively that she had noted increasing pig-
mentation from about 6 months of age. At 12 months of age,
after a gastrointestinal illness, he was found comatose by his
father. Upon presentation, venous blood glucose level was 0.6
mmol/L (normal range [NR], 3.0-5.4 mmol/L), cortisol level
was 560 nmol/L (NR, 138-635 nmol/L), sodium was low at 125
mmol/L (NR, 134-146 mmol/L), and potassium was normal at
4.7 mmol/L (NR, 3.4-5.0 mmol/L). A presumptive diagnosis of
ketotic hypoglycemia secondary to gastroenteritis was made. At
21 months of age, subsequent to a brief history of viral upper
respiratory tract symptoms, the proband was once again found
unresponsive with hypoglycemia (serum blood glucose, 1.4
mmol/L). Endocrine evaluation indicated adrenal insufficiency
with low cortisol, 30 nmol/L; elevated plasma ACTH, 492
pmol/L (NR, 2.2-13.3 pmol/L); slightly low serum aldosterone,
192 pmol/L (NR, 300-500 pmol/L for age 1 wk to 2 y); sup-
pressed renin, 2.2 mU/L (NR, 5-100 mU/L for age 1 wk to 2 y),
and appropriately suppressed insulin, <2 mU/L. The child had
hyperpigmentation of the skin and gums (Figure 1B). Glucocor-
ticoid deficiency was diagnosed, and hydrocortisone therapy
commenced.

A sibling (Figure 1A, II:5) 4 years younger than the proband
was born at 39 week gestation with birth weight of 2595 g (third
percentile). An amniocentesis for increased risk combined first
trimester screen (secondary to a pregnancy associated plasma
protein A [PAPP-A] < first percentile at 0.160 Multiple of the
Median) had returned a normal female
karyotype. Serial ultrasound assess-
ments had shown all fetal biometric pa-
rameters to be maintained on the fifth
percentile with normal fetoplacental
Doppler studies. A short Synacthen test
was performed on day 3 of life, and 125
wg of Synacthen was administered: base-
line cortisol, 38 nmol/L; 30-minute level,
480 nmol/L; and peak attained at 60
minutes, 580 nmol/L (NR, >550 nmol/
L). ACTH level was in the normal range
at 7.4 pmol/L (NR, 2.0-10 pmol/L), and
there was no hypoglycemia on capillary
blood glucose monitoring over the first 3
days of life. The infant was clinically well
and remained under surveillance. In-
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creased pigmentation was noted by her parents from 4 months of
age. At 8 months of age, a second short Synacthen test was un-
dertaken (same dose of Synacthen utilized); peak cortisol level of
130 nmol/L was attained at 60 minutes, consistent with adrenal
insufficiency. ACTH at this time was 517 pmol/L (NR, 2.0-10
pmol/L). Aldosterone and renin were in the normal range. Hy-
drocortisone therapy was commenced immediately. Fludrocor-
tisone was not required for either child.

Both siblings (currently ages 7 and 3 y) have normal thyroid
function, glycated hemoglobin, and fasting glucose and insulin
levels. Their growth is appropriate, with the proband tracking
along the 50th centile for height and 25th for weight and his
sibling tracking between the 10th and 50th centiles for heightand
weight, in line with their midparental expectation (25th centile).

The mother is of East Asian origin, and the father is South
African. They are nonconsanguineous, with no family history of
adrenal insufficiency. In addition to the two affected siblings,
there is a third, unaffected sister 2 years older than the proband
(Figure 1A, II:1). The mother is currently pregnant and had an
amniocentesis (again for increased risk in the combined first tri-
mester screen). DNA testing of cultured amniocytes excluded
FGD in the fetus or heterozygous carriage of either mutation
described below. There was also a twin pregnancy that failed
early in gestation (Figure 1A). There is no history of unexplained
stillbirths or death in childhood on either side of the extended
family.

Study approval

This study was approved by the Outer North East London
Research Ethics Committee (reference no. 09/H0701/12). In-
formed consent was obtained from affected individuals and their
family members.

Mutation discovery

Genomic DNA was extracted from peripheral blood leuko-
cytes of affected individuals and family members after obtaining
informed consent from them and/or their parents. Sequencing of
coding exon/intron boundaries of the melanocortin 2 receptor
(MC2R) and the MC2R accessory protein (MRAP) had been
undertaken, and no mutations were found (primer sequences are
provided in Supplemental Table 1).

Whole exome sequencing was conducted on the proband and
his affected sister (Otogenetics Corp). The captured libraries
were sequenced, and downstream analysis was conducted via
DNAnexus (https://dnanexus.com/). Single nucleotide polymor-
phisms, with threshold coverage of at least 10 reads on the re-
spective nucleotide, were included in the analysis. Variants in the
genes associated with FGD (OMIM no. 202200) or nonclassical
congenital lipoid adrenal hyperplasia (NC-CLAH) were assessed
for causality (MC2R, MRAP, NNT, MCM4, and TXNRD?2 for
FGD; STAR and CYP11A1 for NC-CLAH). Mutations in STAR
and CYP11A1 usually result in CLAH (OMIM no. 201710), a
severe disorder with both adrenal and gonadal steroid insuffi-
ciencies; however, certain partial loss-of-function mutations can
give rise to a milder phenotype with no gonadal derangement,
termed NC-CLAH (12). The identified sequence changes in
NNT were confirmed by PCR, followed by automated sequenc-
ing using primers designed to cover the affected regions (primer
sequences in Supplemental Table 1).
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cDNA analysis

RNA was extracted using QIAGEN RNeasy Mini Kit
(QIAGEN) from phytohaemagglutinin-stimulated blood cells.
Cells were prepared using a modification of a technique first
reported by Nowell and Hungerford (13). cDNA was prepared
from RNA using the Superscript III Kit by Invitrogen. DNA was
prepared from EDTA blood using a QIAmp DNA Mini Kit
(QIAGEN).

Reference sequence

NNT reference sequences are Ensembl, ENSG00000112992
and ENST00000264663. NCBI reference sequences are
NG_032869.1 and NM_012343.3.

Results

Whole exome sequencing identified eight variants in FGD-
causing genes in the proband and his sister: two in NNT,
one in MCM#4, and five in TXNRD2 (Supplemental Table
2). Variants in the other four genes (MC2R, MRAP,
STAR, and CYP11A1) were not identified. Four of the
identified variants represented synonymous changes
(rs10057103, rs11397935, rs35544159, and rs5748470),
and three had a minor allele frequency > 10% (rs762679,
rs1139793, and rs5748469). The final change was a sin-
gle, novel, heterozygous variant, g.5:43613069C>T; c.
211C>T; p. Arg71% in exon 3 of the antioxidant defense
gene NNT (Figure 2A). This heterozygous p.Arg71* vari-
ant will result in premature truncation and remove all
functional domains of the protein. It was found in both
affected individuals (II:2 and II:5) and also in the DNA of
the unaffected sibling (II:1) and their mother (I:2) (Figure
2A). The pattern of inheritance of FGD is autosomal re-
cessive, so it was unlikely that, on its own, this heterozy-
gous change was causative — especially because it was also
carried by the unaffected mother and sister.

To determine whether there was an intronic lesion on
the proband’s other allele, cDNA sequencing was under-
taken after inhibition of nonsense-mediated mRNA decay
(NMD) with cycloheximide (13). This revealed the inclu-
sion of a 69-bp pseudoexonic sequence from the middle
of intron 20 of the NNT gene: ¢.2995_2996insNG_
032869.1:g.103679_103747; p.Asp999Glyfs*2 (Figure
2, B and C, and Supplemental Figure 1). If translated, this
would result in a frameshift and creation of a premature
stop codon at position 1000 (p.Asp999Glyfs*2), and
therefore truncation of the protein before the NADPH
binding domain essential for NNT functionality. No such
inclusion was seen in the cDNA of the unaffected sibling
(IT:1) or their mother (I:2) (Figure 2B).

Further analysis of the genomic DNA of the patient
identified a 4-bp duplication, g.[5:43701537_43701540
dupAGTA], within intron 20 (Figure 2, D-F, and Supple-
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cDNA ATGATTTTCCAGATACTGATTTG intron ATGGCTGTGTAGTATTCCATGGCACATAT
] 20-21
ATGAGAAGCGAGTGGCATT
NNT exon3 Proband
11:2 ATGATTTTCCAGATACTGATTTG Proband aff
112
/
Proband Unaffected
12 ATGAGAAGYGAGTGGCATT sibling Affected
II:1 ATGATTTTCCAGATACTGATTTG sibling Al i . AlLA /.
II:5 ATGGCTGTGTAGTAWKYMTTGSMTGRYAY
/
Affected
sibling Mother il R A Unaffected \
15 ATGAGAAGYGAGTGGCATT 1.2 ATGATTTTCCAGATACTGATTTG sibling Srlalin
II:] ATGGCTGTGTAGTATTCCATGGCACATAT
C CDNA  ITTTCCAG-----=--  —===--- ATACTGATT
Unaffected V‘
sibling Father
1I:1 ATGAGAAGYGAGTGGCATT I:1
PE  HULIHIMLL L
cDNA  ITTTCCAGGATAATG  CTGTGTAATACTGATT
Father
I:1 ATGAGAAGCGAGTGGCATT
D F intron 20-21  ereTAGTA----TTCCATGGC
/
Mother
1:2 ATGAGAAGYGAGTGGCATT
[exon 20]exon 21] [exon 20 [iEMexon 21| affected allele
. . . proband II:2  GTGTAGTAAGTATTCCATGGC
normal processing pseudoexon inclusion

Figure 2. A, The heterozygous sequence change in exon 3 of NNT g.[5:43613069C>T] c.[211C>T] p.[Arg71*] inherited from the mother is
present in all the children (indicated with arrow). B, The heterozygous sequence change in the cDNA of the proband I:2 (indicated with arrow) is
not seen in unaffected sibling II:1 or the mother I:2. C, Partial sequence chromatograms showing the junctions between exon 20/PE (left) and PE/
exon 21 (right). The full sequence is shown in Supplemental Figure 2. D, Schematic of the pseudoexon inclusion event into the mRNA. E, The
heterozygous sequence change in intron 20-21 (indicated with arrows) showing that the mutation is inherited from the father and is present in
both affected siblings, but not the mother or unaffected sister. F, Partial sequence chromatogram of a cloned PCR fragment from the affected
allele of proband II:2 containing the NNT intron 20-21 AGTA duplication g.[5:43701537_43701540dupAGTA]. PE, pseudoexon.

mental Figures 1 and 2). No other sequence changes were
detected within or between exons 20 and 21. Without the
duplication, no splice site is predicted, but splice prediction
software predicts the creation of an aberrant donor splice site
with duplication of the AGTA. Both Human Splice Finder
(http://www.umd.be/HSF/) and Berkeley Drosophila Ge-
nome Project splice site prediction (http:/www.fruitfly.org/
seq_tools/splice.html) software gives the same result. This
change was novel, also identified in the affected sibling (I:5),
and was inherited from the father (I:1), who does not have the
Arg71* variant or FGD (Figures 1A and 2E). Neither of the
heterozygous NNT sequence changes identified in this family
have been annotated in dbSNP or the NHLBI exome variant
server (www.ncbi.nlm.nih.gov/SNP/;  http://evs.gs.washing-
ton.edw/EVS/), and both are predicted to be protein damaging.

Discussion

The patients reported in this study had a progressive pre-
sentation of their FGD, typical for mutations in genes in-
volved in oxidative stress regulation (1, 4).

The genetic analysis demonstrated thatin this case FGD
was caused by a heterozygous intron 20 mutation in com-
bination with a heterozygous stop-gain mutation in exon
3 of the oxidative defense gene NNT. Exome sequencing
identified the ¢.311C>T change but failed to identify the
intronic AGTA duplication because exome data usually
only covers 50 bp either side of an exon, and the dupli-
cation was at a distance of 1197 bp from exon 20. Without
the pointer of the first ¢.311C>T mutation in NNT, we
would not have performed cDNA analysis to uncover the
pseudoexon event. The underlying genomic mutation was
detected by conventional Sanger sequencing of intron 20.
The duplication in intron 20 resulted in formation of an
aberrant splice site, pseudoexon activation, and its inclu-
sion into the cDNA. Pre-mRNA splicing is a complicated
and incompletely understood mechanism mediated by de-
generative splicing elements consisting of the branch point
sequence, the polypyrimidine tract, the 5’ (donor) and 3’
(acceptor) splice site, and exonic/intronic splicing enhanc-
ers/silencers. Within the 5’ and 3’ splice sites, the GT and
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AG nucleotides, respectively, are almost invariant, but the
combination of nucleotides flanking them is also essential
for recognition by the splicing machinery. In this case, the
duplication AGTAAGTA renders the first GT a 5’ splice
site, whereas in the single AGTA, the GT is not a valid
splice site. A limitation of this study is that we were unable
to perform a Western blot to confirm the absence of the
protein because we could not obtain further samples from
the family.

This case highlights the importance of cDNA analysis
for detection of significant mutations in the intronic se-
quence of candidate genes in instances where exon se-
quencing fails to provide an adequate diagnosis. Intronic
sequences are often excluded from genetic studies due to
their large size, coupled with the uncertainty of predicting
the consequence of any changes found within them. cDNA
analysis offers the ideal alternative, although it may be
difficult to perform for tissue-specific genes. Even in ubiq-
uitously expressed genes, cDNA changes could be missed
if they result in NMD (14), a process that eliminates
mRNAs containing premature termination codons, thus
helping to limit the synthesis of abnormal proteins (14).
Reducing NMD with cycloheximide treatment, as per-
formed here, facilitates the detection of abnormal tran-
scripts that would otherwise degrade (14). Both of these
novel mutations result in premature stop codons, and their
mRNA would likely undergo NMD, resulting in the ab-
sence of an NNT transcript, therefore precluding discov-
ery of the aberrant pseudoexon inclusion. We suspected
the presence of an intronic defect because of the clue of one
defective NNT allele, but should a defect occur in ho-
mozygosity, it could easily be missed completely by con-
ventional exonic or whole exome sequencing.

Sequence changes within introns can provide a poten-
tial target for antisense oligonucleotide therapy (15), and
therefore detection of pseudoexon mutations is becoming
increasingly important. If used in these siblings, such oli-
gonucleotides could interfere with the pseudoexon acti-
vation sequence and thus block inclusion into the cDNA
(Figure 2C), leaving only the heterozygous Arg71* muta-
tion in exon 3, which on its own does not cause FGD (as
demonstrated in the unaffected sibling [II:1] and the
mother [I:2]) (Figure 1A).

Discovery of the causative mutations in this family has
facilitated prenatal testing and exclusion of FGD in the
mother’s current pregnancy. As demonstrated in this case,
complete genetic diagnosis enables antenatal diagnosis,
obviating unnecessary investigation for unaffected off-
spring, while facilitating early initiation of potentially life-
saving therapy in affected offspring. Furthermore, it raises
the possibility of preventative or curative intervention in
the future.
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