21 research outputs found

    MRAP deficiency impairs adrenal progenitor cell differentiation and gland zonation.

    Get PDF
    Melanocortin 2 receptor accessory protein (MRAP) is a single transmembrane domain accessory protein and a critical component of the hypothamo-pituitary-adrenal axis. MRAP is highly expressed in the adrenal gland and is essential for adrenocorticotropin hormone (ACTH) receptor expression and function. Human loss-of-function mutations in MRAP cause familial glucocorticoid (GC) deficiency (FGD) type 2 (FGD2), whereby the adrenal gland fails to respond to ACTH and to produce cortisol. In this study, we generated Mrap-null mice to study the function of MRAP in vivo. We found that the vast majority of Mrap-/- mice died at birth but could be rescued by administration of corticosterone to pregnant dams. Surviving Mrap-/- mice developed isolated GC deficiency with normal mineralocorticoid and catecholamine production, recapitulating FGD2. The adrenal glands of adult Mrap-/- mice were small, with grossly impaired adrenal capsular morphology and cortex zonation. Progenitor cell differentiation was significantly impaired, with dysregulation of WNT4/β-catenin and sonic hedgehog pathways. These data demonstrate the roles of MRAP in both steroidogenesis and the regulation of adrenal cortex zonation. This is the first mouse model of isolated GC deficiency and reveals the role of MRAP in adrenal progenitor cell regulation and cortex zonation.-Novoselova, T. V., Hussain, M., King, P. J., Guasti, L., Metherell, L. A., Charalambous, M., Clark, A. J. L., Chan, L. F. MRAP deficiency impairs adrenal progenitor cell differentiation and gland zonation

    Loss of Mrap2 is associated with Sim1 deficiency and increased circulating cholesterol.

    Get PDF
    Melanocortin receptor accessory protein 2 (MRAP2) is a transmembrane accessory protein predominantly expressed in the brain. Both global and brain-specific deletion of Mrap2 in mice results in severe obesity. Loss-of-function MRAP2 mutations have also been associated with obesity in humans. Although MRAP2 has been shown to interact with MC4R, a G protein-coupled receptor with an established role in energy homeostasis, appetite regulation and lipid metabolism, the mechanisms through which loss of MRAP2 causes obesity remains uncertain. In this study, we used two independently derived lines of Mrap2 deficient mice (Mrap2(tm1a/tm1a)) to further study the role of Mrap2 in the regulation of energy balance and peripheral lipid metabolism. Mrap2(tm1a/tm1a) mice have a significant increase in body weight, with increased fat and lean mass, but without detectable changes in food intake or energy expenditure. Transcriptomic analysis showed significantly decreased expression of Sim1, Trh, Oxt and Crh within the hypothalamic paraventricular nucleus of Mrap2(tm1a/tm1a) mice. Circulating levels of both high-density lipoprotein and low-density lipoprotein were significantly increased in Mrap2 deficient mice. Taken together, these data corroborate the role of MRAP2 in metabolic regulation and indicate that, at least in part, this may be due to defective central melanocortin signalling

    Down-regulation of HSP70 sensitizes gastric epithelial cells to apoptosis and growth retardation triggered by H. pylori

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>H. pylori </it>infection significantly attenuated the expression of HSP70 in gastric mucosal cells. However, the role of HSP70 cancellation in <it>H. pylori</it>-associated cell damages is largely unclear.</p> <p>Methods</p> <p>Small interfering RNA (siRNA) was used to down-regulate HSP70 in gastric epithelial cell lines AGS. The transfected cells were then incubated with <it>H. pylori </it>and the functions of HSP70 suppression were observed by viability assay, cell cycle analyses and TUNEL assay. HSP70 target apoptotic proteins were further identified by Western blot.</p> <p>Results</p> <p>The inhibition of HSP70 has further increased the effect of growth arrest and apoptosis activation triggered by <it>H. pylori </it>in gastric epithelial cells. The anti-proliferation function of HSP70 depletion was at least by up-regulating p21 and cell cycle modulation with S-phase accumulation. An increase of apoptosis-inducing factor (AIF) and cytosolic cytochrome C contributes to the activation of apoptosis following down-regulation of intracellular HSP70. Extracellular HSP70 increased cellular resistance to apoptosis by suppression the release of AIF and cytochrome c from mitochondria, as well as inhibition of p21 expression.</p> <p>Conclusions</p> <p>The inhibition of HSP70 aggravated gastric cellular damages induced by <it>H. pylori</it>. Induction of HSP70 could be a potential therapeutic target for protection gastric mucosa from <it>H. pylori</it>-associated injury.</p

    Multi-omic profiling reveals the ataxia protein sacsin is required for integrin trafficking and synaptic organization.

    Get PDF
    Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is a childhood-onset cerebellar ataxia caused by mutations in SACS, which encodes the protein sacsin. Cellular ARSACS phenotypes include mitochondrial dysfunction, intermediate filament disorganization, and progressive death of cerebellar Purkinje neurons. It is unclear why the loss of sacsin causes these deficits or why they manifest as cerebellar ataxia. Here, we perform multi-omic profiling in sacsin knockout (KO) cells and identify alterations in microtubule dynamics and mislocalization of focal adhesion (FA) proteins, including multiple integrins. Deficits in FA structure, signaling, and function can be rescued by targeting PTEN, a negative regulator of FA signaling. ARSACS mice possess mislocalization of ITGA1 in Purkinje neurons and synaptic disorganization in the deep cerebellar nucleus (DCN). The sacsin interactome reveals that sacsin regulates interactions between cytoskeletal and synaptic adhesion proteins. Our findings suggest that disrupted trafficking of synaptic adhesion proteins is a causal molecular deficit in ARSACS

    Modulation of Cellular Hsp72 Levels in Undifferentiated and Neuron-Like SH-SY5Y Cells Determines Resistance to Staurosporine-Induced Apoptosis

    Get PDF
    Increased expression of Hsp72 accompanies differentiation of human neuroblastoma SH-SY5Y cells to neuron-like cells. By modulating cellular levels of Hsp72, we demonstrate here its anti-apoptotic activity both in undifferentiated and neuron-like cells. Thermal preconditioning (43°C for 30 min) induced Hsp72, leading to cellular protection against apoptosis induced by a subsequent treatment with staurosporine. Preconditioned staurosporine-treated cells displayed decreased Bax recruitment to mitochondria and subsequent activation, as well as reduced cytochrome c redistribution from mitochondria. The data are consistent with Hsp72 blocking apoptosis upstream of Bax recruitment to mitochondria. Neuron-like cells (with elevated Hsp72) were more resistant to staurosporine by all measured indices of apoptotic signaling. Use of stable transfectants ectopically expressing moderately elevated levels of Hsp72 revealed that such cells in the undifferentiated state showed enhanced resistance to staurosporine-induced apoptosis, which was even more robust after differentiation to neuron-like cells. Overall, the protective effects of differentiation, thermal preconditioning and ectopic Hsp72 expression were additive. The strong inverse correlation between cellular Hsp72 levels and susceptibility to apoptosis support the notion that Hsp72 acts as a significant neuroprotective factor, enabling post-mitotic neurons to withstand potentially lethal stress that induces apoptosis

    Oncometabolite induced primary cilia loss in pheochromocytoma

    No full text
    Primary cilia are sensory organelles involved in regulation of cellular signaling. Cilia loss is frequently observed in tumors; yet, the responsible mechanisms and consequences for tumorigenesis remain unclear. We demonstrate that cilia structure and function is disrupted in human pheochromocytomas - endocrine tumors of the adrenal medulla. This is concomitant with transcriptional changes within cilia-mediated signaling pathways that are associated with tumorigenesis generally and pheochromocytomas specifically. Importantly, cilia loss was most dramatic in patients with germline mutations in the pseudohypoxia-linked genes SDHx and VHL. Using a pheochromocytoma cell line derived from rat, we show that hypoxia and oncometabolite-induced pseudohypoxia are key drivers of cilia loss and identify that this is dependent on activation of an Aurora-A/HDAC6 cilia resorption pathway. We also show cilia loss drives dramatic transcriptional changes associated with proliferation and tumorigenesis. Our data provide evidence for primary cilia dysfunction contributing to pathogenesis of pheochromocytoma by a hypoxic/pseudohypoxic mechanism and implicates oncometabolites as ciliary regulators. This is important as pheochromocytomas can cause mortality by mechanisms including catecholamine production and malignant transformation, while hypoxia is a general feature of solid tumors. Moreover, pseudohypoxia-induced cilia resorption can be pharmacologically inhibited, suggesting potential for therapeutic intervention

    No endogenous circadian rhythm in resting plasma Hsp72 concentration in humans

    No full text
    Extra-cellular (e) heat shock protein (Hsp)72 has been shown to be elevated in a number of clinical conditions and has been proposed as a potential diagnostic marker. From a methodological and diagnostic perspective, it is important to investigate if concentrations of eHsp72 fluctuate throughout the day; hence, the purpose of the study was to measure resting concentrations of plasma eHsp72 throughout a 24-h period. Blood samples were taken every hour from 1200–2100 hours and from 0700–1200 hours the following day from seven healthy recreationally active males. Participants remained in the laboratory throughout the trial, performed light sedentary activities and were provided with standardised meals and fluids. Physical activity was quantified throughout by the use of an accelerometer. Ethylenediaminetetraacetic acid blood samples were analysed for eHsp72 concentration using a commercially available high-sensitivity enzyme-linked immunosorbent assay (intra-assay coefficient of variation = 1.4%). One-way repeated measures analysis of variance revealed that measures of physiological stress such as heart rate, systolic and diastolic blood pressure remained stable throughout the trial and subjects remained sedentary throughout (mean activity energy expenditure above resting metabolic rate—35.7 ± 10.0 kcal∙h−1). Plasma Hsp72 concentration did not fluctuate significantly throughout the day and showed no apparent endogenous circadian rhythm in absolute (P = 0.367) or plasma volume change corrected data (P = 0.380). Individual coefficients of variation ranged from 3.8–7.7% (mean 5.4%). Mean Hsp72 concentration across all subjects and time points was 1.49 ± 0.08 ng∙ml−1. These data show that in a rested state, plasma eHsp72 concentration shows no apparent endogenous circadian rhythm
    corecore