262 research outputs found
Shuttle S-band communications technical concepts
Using the S-band communications system, shuttle orbiter can communicate directly with the Earth via the Ground Spaceflight Tracking and Data Network (GSTDN) or via the Tracking and Data Relay Satellite System (TDRSS). The S-band frequencies provide the primary links for direct Earth and TDRSS communications during all launch and entry/landing phases of shuttle missions. On orbit, S-band links are used when TDRSS Ku-band is not available, when conditions require orbiter attitudes unfavorable to Ku-band communications, or when the payload bay doors are closed. the S-band communications functional requirements, the orbiter hardware configuration, and the NASA S-band communications network are described. The requirements and implementation concepts which resulted in techniques for shuttle S-band hardware development discussed include: (1) digital voice delta modulation; (2) convolutional coding/Viterbi decoding; (3) critical modulation index for phase modulation using a Costas loop (phase-shift keying) receiver; (4) optimum digital data modulation parameters for continuous-wave frequency modulation; (5) intermodulation effects of subcarrier ranging and time-division multiplexing data channels; (6) radiofrequency coverage; and (7) despreading techniques under poor signal-to-noise conditions. Channel performance is reviewed
Discommensurational and Inhomogeneous States Induced by a Strong Magnetic Field in Low-Dimensional Antiferromagnets
Anisotropic antiferromagnetic systems of dimensionality greater than one in
an external field are shown to exhibit a complicated array of ground states
depending on the spin structure of the surface. The simplest structure that
exhibits these effects is the spin ladder with the surface being the ladder
end, which can be either compensated or non-compensated spins. The structure
with the compensated end has a surface spin flop phase, the non-compensated end
has a discommensurational phase, and the transition to these phases can be
either first or second order with a tricritical point.Comment: 10 page
SPT-3G: A Next-Generation Cosmic Microwave Background Polarization Experiment on the South Pole Telescope
We describe the design of a new polarization sensitive receiver, SPT-3G, for
the 10-meter South Pole Telescope (SPT). The SPT-3G receiver will deliver a
factor of ~20 improvement in mapping speed over the current receiver, SPTpol.
The sensitivity of the SPT-3G receiver will enable the advance from statistical
detection of B-mode polarization anisotropy power to high signal-to-noise
measurements of the individual modes, i.e., maps. This will lead to precise
(~0.06 eV) constraints on the sum of neutrino masses with the potential to
directly address the neutrino mass hierarchy. It will allow a separation of the
lensing and inflationary B-mode power spectra, improving constraints on the
amplitude and shape of the primordial signal, either through SPT-3G data alone
or in combination with BICEP-2/KECK, which is observing the same area of sky.
The measurement of small-scale temperature anisotropy will provide new
constraints on the epoch of reionization. Additional science from the SPT-3G
survey will be significantly enhanced by the synergy with the ongoing optical
Dark Energy Survey (DES), including: a 1% constraint on the bias of optical
tracers of large-scale structure, a measurement of the differential Doppler
signal from pairs of galaxy clusters that will test General Relativity on ~200
Mpc scales, and improved cosmological constraints from the abundance of
clusters of galaxies.Comment: 21 pages, 9 figures. To be published in Proceedings of SPIE Volume
9153. Presented at SPIE Astronomical Telescopes + Instrumentation 2014,
conference 915
CMB Polarization B-mode Delensing with SPTpol and Herschel
We present a demonstration of delensing the observed cosmic microwave
background (CMB) B-mode polarization anisotropy. This process of reducing the
gravitational-lensing generated B-mode component will become increasingly
important for improving searches for the B modes produced by primordial
gravitational waves. In this work, we delens B-mode maps constructed from
multi-frequency SPTpol observations of a 90 deg patch of sky by subtracting
a B-mode template constructed from two inputs: SPTpol E-mode maps and a lensing
potential map estimated from the map of the
CIB. We find that our delensing procedure reduces the measured B-mode power
spectrum by 28% in the multipole range ; this is shown to be
consistent with expectations from theory and simulations and to be robust
against systematics. The null hypothesis of no delensing is rejected at . Furthermore, we build and use a suite of realistic simulations to
study the general properties of the delensing process and find that the
delensing efficiency achieved in this work is limited primarily by the noise in
the lensing potential map. We demonstrate the importance of including realistic
experimental non-idealities in the delensing forecasts used to inform
instrument and survey-strategy planning of upcoming lower-noise experiments,
such as CMB-S4.Comment: 17 pages, 10 figures. Comments are welcome
Performance and on-sky optical characterization of the SPTpol instrument
In January 2012, the 10m South Pole Telescope (SPT) was equipped with a
polarization-sensitive camera, SPTpol, in order to measure the polarization
anisotropy of the cosmic microwave background (CMB). Measurements of the
polarization of the CMB at small angular scales (~several arcminutes) can
detect the gravitational lensing of the CMB by large scale structure and
constrain the sum of the neutrino masses. At large angular scales (~few
degrees) CMB measurements can constrain the energy scale of Inflation. SPTpol
is a two-color mm-wave camera that consists of 180 polarimeters at 90 GHz and
588 polarimeters at 150 GHz, with each polarimeter consisting of a dual
transition edge sensor (TES) bolometers. The full complement of 150 GHz
detectors consists of 7 arrays of 84 ortho-mode transducers (OMTs) that are
stripline coupled to two TES detectors per OMT, developed by the TRUCE
collaboration and fabricated at NIST. Each 90 GHz pixel consists of two
antenna-coupled absorbers coupled to two TES detectors, developed with Argonne
National Labs. The 1536 total detectors are read out with digital
frequency-domain multiplexing (DfMUX). The SPTpol deployment represents the
first on-sky tests of both of these detector technologies, and is one of the
first deployed instruments using DfMUX readout technology. We present the
details of the design, commissioning, deployment, on-sky optical
characterization and detector performance of the complete SPTpol focal plane.Comment: 15 pages, 6 figures. Conference: SPIE Astronomical Telescopes and
Instrumentation 201
Feedhorn-coupled TES polarimeter camera modules at 150 GHz for CMB polarization measurements with SPTpol
The SPTpol camera is a dichroic polarimetric receiver at 90 and 150 GHz.
Deployed in January 2012 on the South Pole Telescope (SPT), SPTpol is looking
for faint polarization signals in the Cosmic Microwave Background (CMB). The
camera consists of 180 individual Transition Edge Sensor (TES) polarimeters at
90 GHz and seven 84-polarimeter camera modules (a total of 588 polarimeters) at
150 GHz. We present the design, dark characterization, and in-lab optical
properties of the 150 GHz camera modules. The modules consist of
photolithographed arrays of TES polarimeters coupled to silicon platelet arrays
of corrugated feedhorns, both of which are fabricated at NIST-Boulder. In
addition to mounting hardware and RF shielding, each module also contains a set
of passive readout electronics for digital frequency-domain multiplexing. A
single module, therefore, is fully functional as a miniature focal plane and
can be tested independently. Across the modules tested before deployment, the
detectors average a critical temperature of 478 mK, normal resistance R_N of
1.2 Ohm, unloaded saturation power of 22.5 pW, (detector-only) optical
efficiency of ~ 90%, and have electrothermal time constants < 1 ms in
transition.Comment: 15 pages, 11 figure
- …