187 research outputs found

    Transmission enhancement in loss-gain multilayers by resonant suppression of reflection

    Get PDF
    Using the transfer-matrix approach and solving time-domain differential equations, we analyze the loss compensation mechanism in multilayer systems composed of an absorbing transparent conductive oxide and dielectric doped with an active material. We reveal also another regime with the possibility of enhanced transmission with suppressed reflection originating from the resonant properties of the multilayers. For obliquely incident and evanescent waves, such enhanced transmission under suppressed reflection turns into the reflectionless regime, which is similar to that observed in the PT-symmetric structures, but does not require PT symmetry. We infer that the reflectionless transmission is due to the full loss compensation at the resonant wavelengths of the multilayers.Comment: 12 pages, 10 figure

    Asymmetric transmission in planar chiral split-ring metamaterials: Microscopic Lorentz-theory approach

    Get PDF
    The electronic Lorentz theory is employed to explain the optical properties of planar split-ring metamaterials. Starting from the dynamics of individual free carriers, the electromagnetic response of an individual split-ring meta-atom is determined, and the effective permittivity tensor of the metamaterial is calculated for normal incidence of light. Whenever the split ring lacks in-plane mirror symmetry, the corresponding permittivity tensor has a crystallographic structure of an elliptically dichroic medium, and the metamaterial exhibits optical properties of planar chiral structures. Its transmission spectra are different for right-handed versus left-handed circular polarization of the incident wave, so the structure changes its transmittance when the direction of incidence is reversed. The magnitude of this change is shown to be related to the geometric parameters of the split ring. The proposed approach can be generalized to a wide variety of metal-dielectric metamaterial geometries

    Trapped-mode excitation in all-dielectric metamaterials with loss and gain

    Full text link
    Non-Hermitian photonics based on combining loss and gain media within a single optical system provides a number of approaches to control and generate the flow of light. In this paper, we show that by introducing non-Hermitian perturbation into the system with loss and gain constituents, the high-quality resonances known as trapped modes can be excited without the need to change the symmetry of the unit cell geometry. To demonstrate this idea, we consider a widely used all-dielectric planar metamaterial whose unit cell consists of a pair of rectangular nanoantennas made of ordinal (with loss) and doped (with gain) silicon. Since the quality factor of the trapped-mode resonance can be controlled by changing both spatial symmetry and non-Hermiticity, varying loss and gain allows us to compensate for the influence of asymmetry and restore the quality factor of the localized mode. The results obtained suggest new ways to achieve high-quality resonances in non-Hermitian metamaterials promising for many practical applications in nanophotonics.Comment: 7 pages, 6 figure

    Viral Diversity and Diversification of Major Non-Structural Genes vif, vpr, vpu, tat exon 1 and rev exon 1 during Primary HIV-1 Subtype C Infection

    Get PDF
    To assess the level of intra-patient diversity and evolution of HIV-1C non-structural genes in primary infection, viral quasispecies obtained by single genome amplification (SGA) at multiple sampling timepoints up to 500 days post-seroconversion (p/s) were analyzed. The mean intra-patient diversity was 0.11% (95% CI; 0.02 to 0.20) for vif, 0.23% (95% CI; 0.08 to 0.38) for vpr, 0.35% (95% CI; −0.05 to 0.75) for vpu, 0.18% (95% CI; 0.01 to 0.35) for tat exon 1 and 0.30% (95% CI; 0.02 to 0.58) for rev exon 1 during the time period 0 to 90 days p/s. The intra-patient diversity increased gradually in all non-structural genes over the first year of HIV-1 infection, which was evident from the vif mean intra-patient diversity of 0.46% (95% CI; 0.28 to 0.64), vpr 0.44% (95% CI; 0.24 to 0.64), vpu 0.84% (95% CI; 0.55 to 1.13), tat exon 1 0.35% (95% CI; 0.14 to 0.56 ) and rev exon 1 0.42% (95% CI; 0.18 to 0.66) during the time period of 181 to 500 days p/s. There was a statistically significant increase in viral diversity for vif (p = 0.013) and vpu (p = 0.002). No associations between levels of viral diversity within the non-structural genes and HIV-1 RNA load during primary infection were found. The study details the dynamics of the non-structural viral genes during the early stages of HIV-1C infection

    Elliptical dichroism: operating principle of planar chiral metamaterials

    Get PDF
    We employ a homogenization technique based on the Lorentz electronic theory to show that planar chiral structures (PCSs) can be described by an effective dielectric tensor similar to that of biaxial elliptically dichroic crystals. Such a crystal is shown to behave like a PCS insofar as it exhibits its characteristic optical properties, namely, co-rotating elliptical polarization eigenstates and asymmetric, direction-dependent transmission for left/right-handed incident wave polarization.Comment: 3 pages, version as accepted in Optics Letters but before final shortening
    corecore