9 research outputs found

    Pitch discrimination in optimal and suboptimal acoustic environments : electroencephalographic, magnetoencephalographic, and behavioral evidence

    Get PDF
    Pitch discrimination is a fundamental property of the human auditory system. Our understanding of pitch-discrimination mechanisms is important from both theoretical and clinical perspectives. The discrimination of spectrally complex sounds is crucial in the processing of music and speech. Current methods of cognitive neuroscience can track the brain processes underlying sound processing either with precise temporal (EEG and MEG) or spatial resolution (PET and fMRI). A combination of different techniques is therefore required in contemporary auditory research. One of the problems in comparing the EEG/MEG and fMRI methods, however, is the fMRI acoustic noise. In the present thesis, EEG and MEG in combination with behavioral techniques were used, first, to define the ERP correlates of automatic pitch discrimination across a wide frequency range in adults and neonates and, second, they were used to determine the effect of recorded acoustic fMRI noise on those adult ERP and ERF correlates during passive and active pitch discrimination. Pure tones and complex 3-harmonic sounds served as stimuli in the oddball and matching-to-sample paradigms. The results suggest that pitch discrimination in adults, as reflected by MMN latency, is most accurate in the 1000-2000 Hz frequency range, and that pitch discrimination is facilitated further by adding harmonics to the fundamental frequency. Newborn infants are able to discriminate a 20% frequency change in the 250-4000 Hz frequency range, whereas the discrimination of a 5% frequency change was unconfirmed. Furthermore, the effect of the fMRI gradient noise on the automatic processing of pitch change was more prominent for tones with frequencies exceeding 500 Hz, overlapping with the spectral maximum of the noise. When the fundamental frequency of the tones was lower than the spectral maximum of the noise, fMRI noise had no effect on MMN and P3a, whereas the noise delayed and suppressed N1 and exogenous N2. Noise also suppressed the N1 amplitude in a matching-to-sample working memory task. However, the task-related difference observed in the N1 component, suggesting a functional dissociation between the processing of spatial and non-spatial auditory information, was partially preserved in the noise condition. Noise hampered feature coding mechanisms more than it hampered the mechanisms of change detection, involuntary attention, and the segregation of the spatial and non-spatial domains of working-memory. The data presented in the thesis can be used to develop clinical ERP-based frequency-discrimination protocols and combined EEG and fMRI experimental paradigms.Kyky erottaa korkeat ja matalat äänet toisistaan on yksi aivojen perustoiminnoista. Ilman sitä emme voisi ymmärtää puhetta tai nauttia musiikista. Jotkut potilaat ja hyvin pienet lapset eivät pysty itse kertomaan, kuulevatko he eron vai eivät, mutta heidän aivovasteensa voivat paljastaa sen. Sävelkorkeuden erotteluun liittyvistä aivotoiminnoista ei kuitenkaan tiedetä tarpeeksi edes terveillä aikuisilla. Siksi tarvitaan lisää tämän aihepiirin tutkimusta, jossa käytetään nykyaikaisia aivotutkimusmenetelmiä, kuten tapahtumasidonnaisia herätevasteita (engl. event-related potential, ERP) ja toiminnallista magneettikuvausta (engl. functional magnetic resonance imaging, fMRI). ERP-menetelmä paljastaa, milloin aivot erottavat sävelkorkeuseron, kun taas fMRI paljastaa, mitkä aivoalueet ovat aktivoituneet tässä toiminnossa. Yhdistämällä nämä kaksi menetelmää voidaan saada kokonaisvaltaisempi kuva sävelkorkeuden erotteluun liittyvistä aivotoiminnoista. fMRI-menetelmään liittyy kuitenkin eräs ongelma, nimittäin fMRI-laitteen synnyttämä kova melu, joka voi vaikeuttaa kuuloon liittyvää tutkimusta. Tässä väitöskirjassa tutkitaan, kuinka sävelkorkeuden erottelu voidaan todeta aikuisten ja vastasyntyneiden vauvojen aivoissa ja kuinka fMRI-laitteen melu vaikuttaa kuuloärsykkeiden synnyttämiin ERP-vasteisiin. Tutkimuksen tulokset osoittavat, että aikuisen aivot voivat erottaa niinkin pieniä kuin 2,5 %:n taajuuseroja, mutta erottelu tapahtuu nopeammin n. 1000-2000 Hz:n taajuudella kuin matalammilla tai korkeammilla taajuuksilla. Vastasyntyneen vauvan aivot erottelivat vain yli 20 %:n taajuusmuutoksia. Kun taustalla soitettiin fMRI-laitteen melua, se vaimensi aivovasteita 500-2000 Hz:n äänille enemmän kuin muille äänille. Melu ei kuitenkaan vaikuttanut alle 500 Hz:n äänten synnyttämiin aivovasteisiin. Riippumatta siitä, esitettiinkö taustalla melua vai ei, äänilähteen paikan muutoksen synnyttämä ERP-vaste oli suurempi kuin äänenkorkeuden muutoksen synnyttämä vaste. Tämä väitöskirjatutkimus on osoittanut, että sävelkorkeuden erottelua voidaan tutkia tehokkaasti ERP-menetelmällä sekä aikuisilla että vauvoilla. Tulosten mukaan ERP- ja fMRI-menetelmien yhdistämistä voidaan tehostaa ottamalla kokeiden suunnittelussa huomioon fMRI-laitteen melun vaikutukset ERP-vasteisiin. Tutkimuksen aineistoa voidaan hyödyntää monimutkaisten sävelkorkeuden erottelua mittaavien kokeiden suunnittelussa mm. potilailla ja lapsilla

    Neonatal frequency discrimination in 250-4000-Hz range: Electrophysiological evidence

    No full text
    Objective: The precision of sound frequency discrimination in newborn infants in the 250-4000-Hz frequency range was determined using the neonatal electrophysiological mismatch response (MMR), the infant equivalent of adult mismatch negativity (MMN). Methods: The electroencephalogram (EEG) was recorded in I 1 full-term sleeping newborn infants mostly in active sleep (67 % of the time). Pure tones were presented through loudspeakers in an oddball paradigm with a 800-ms stimulus onset asynchrony (SOA). Each stimulus block contained a standard (p = 0.76) of 250, 1000, or 4000 Hz in frequency (in separate blocks) and deviants with a frequency change of either 5% or 20% of the standard (p = 0.12 of each). Results: A positive ERP deflection was found at 200-300 ms from stimulus onset in response to the 20% deviation from the 250, 1000, and 4000 Hz standard frequencies. The amplitude of the response in the 200-300 ms time window was significantly larger for the 20% than 5% deviation. Conclusions: We observed in newborn infants automatic frequency discrimination as reflected by a positive MMR. The newborns were able to discriminate frequency change of 20% in the 250-4000-Hz frequency range, whereas the discrimination of the 5% frequency change was not statistically confirmed. Significance: The present data hence suggest that the neonatal frequency discrimination has lower resolution than that in adult and older children data. (c) 2006 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved
    corecore