4,007 research outputs found
New global stability estimates for the Gel'fand-Calderon inverse problem
We prove new global stability estimates for the Gel'fand-Calderon inverse
problem in 3D. For sufficiently regular potentials this result of the present
work is a principal improvement of the result of [G. Alessandrini, Stable
determination of conductivity by boundary measurements, Appl. Anal. 27 (1988),
153-172]
General Statistical properties of the CMB Polarization field
The distribution of the polarization of the Cosmic Microwave Background (CMB)
in the sky is determined by the hypothesis of random Gaussian distribution of
the primordial density perturbations. This hypotheses is well motivated by the
inflationary cosmology. Therefore, the test of consistency of the statistical
properties of the CMB polarization field with the Gaussianity of primordial
density fluctuations is a realistic way to study the nature of primordial
inhomogeneities in the Universe. This paper contains the theoretical
predictions of the general statistical properties of the CMB polarization
field. All results obtained under assumption of the Gaussian nature of the
signal. We pay the special attention to the following two problems. First, the
classification and statistics of the singular points of the polarization field
where polarization is equal to zero. Second, the topology of contours of the
value of the degree of polarization. We have investigated the percolation
properties for the zones of ``strong'' and ``weak'' polarization. We also have
calculated Minkowski functionals for the CMB polarization field. All results
are analytical.Comment: Latex, 22 pages, including 5 figure
Testing for Non-Gaussianity in the Wilkinson Microwave Anisotropy Probe Data: Minkowski Functionals and the Length of the Skeleton
The three Minkowski functionals and the recently defined length of the
skeleton are estimated for the co-added first-year Wilkinson Microwave
Anisotropy Probe (WMAP) data and compared with 5000 Monte Carlo simulations,
based on Gaussian fluctuations with the a-priori best-fit running-index power
spectrum and WMAP-like beam and noise properties. Several power
spectrum-dependent quantities, such as the number of stationary points, the
total length of the skeleton, and a spectral parameter, gamma, are also
estimated. While the area and length Minkowski functionals and the length of
the skeleton show no evidence for departures from the Gaussian hypothesis, the
northern hemisphere genus has a chi^2 that is large at the 95% level for all
scales. For the particular smoothing scale of 3.40 degrees FWHM it is larger
than that found in 99.5% of the simulations. In addition, the WMAP genus for
negative thresholds in the northern hemisphere has an amplitude that is larger
than in the simulations with a significance of more than 3 sigma. On the
smallest angular scales considered, the number of extrema in the WMAP data is
high at the 3 sigma level. However, this can probably be attributed to the
effect of point sources. Finally, the spectral parameter gamma is high at the
99% level in the northern Galactic hemisphere, while perfectly acceptable in
the southern hemisphere. The results provide strong evidence for the presence
of both non-Gaussian behavior and an unexpected power asymmetry between the
northern and southern hemispheres in the WMAP data.Comment: 17 pages, 10 figures, accepted for publication in Ap
Power filtration of CMB observational data
We propose a power filter Gp for linear reconstruction of the CMB signal from
observational maps. This Gp filter preserves the power spectrum of the CMB
signal in contrast to the Wiener filter which diminishes the power spectrum of
the reconstructed CMB signal. We demonstrate how peak statistics and a cluster
analysis can be used to estimate the probability of the presence of a CMB
signal in observational records. The efficiency of the Gp filter is
demonstrated on a toy model of an observational record consisting of a CMB
signal and noise in the form of foreground point sources.Comment: 17 pages; 4 figures; submitted to International Journal of Modern
Physic
Time machines: the Principle of Self-Consistency as a consequence of the Principle of Minimal Action
We consider the action principle to derive the classical, non-relativistic
motion of a self-interacting particle in a 4-D Lorentzian spacetime containing
a wormhole and which allows the existence of closed time-like curves. For the
case of a `hard-sphere' self-interaction potential we show that the only
possible trajectories (for a particle with fixed initial and final positions
and which traverses the wormhole once) minimizing the classical action are
those which are globally self-consistent, and that the `Principle of
self-consistency' (originally introduced by Novikov) is thus a natural
consequence of the `Principle of minimal action.'Comment: 26 pages, plain latex; modified version includes extra constraint for
collinear collision case and other minor misprints correction
Squeezars: Tidally powered stars orbiting a massive black hole
We propose that there exists a class of transient sources, "squeezars", which
are stars caught in highly eccentric orbits around a massive (m<10^8 Mo) black
hole (MBH), whose atypically high luminosity (up to a significant fraction of
their Eddington luminosity) is powered by tidal interactions with the MBH.
Their existence follows from the presence of a mass sink, the MBH, in the
galactic center, which drives a flow of stars into nearly radial orbits to
replace those it has destroyed. We consider two limits for the stellar response
to tidal heating: surface heating with radiative cooling ("hot squeezars") and
bulk heating with adiabatic expansion ("cold squeezars"), and calculate the
evolution of the squeezar orbit, size, luminosity and effective temperature.
The squeezar formation rate is only ~0.05 that of tidal disruption flares, but
squeezar lifetimes are many orders of magnitude longer, and so future
observations of squeezars in nearby galaxies can probe the tidal process that
feeds MBHs and the effects of extreme tides on stars. The mean number of
squeezars orbiting the Galactic MBH is estimated at 0.1-1.Comment: ApJ Lett. accepted. 4 pp. 1 fi
Formulas and equations for finding scattering data from the Dirichlet-to-Neumann map with nonzero background potential
For the Schrodinger equation at fixed energy with a potential supported in a
bounded domain we give formulas and equations for finding scattering data from
the Dirichlet-to-Neumann map with nonzero background potential. For the case of
zero background potential these results were obtained in [R.G.Novikov,
Multidimensional inverse spectral problem for the equation
-\Delta\psi+(v(x)-Eu(x))\psi=0, Funkt. Anal. i Ego Prilozhen 22(4), pp.11-22,
(1988)]
CMB anisotropies due to cosmological magnetosonic waves
We study scalar mode perturbations (magnetosonic waves) induced by a helical
stochastic cosmological magnetic field and derive analytically the
corresponding cosmic microwave background (CMB) temperature and polarization
anisotropy angular power spectra. We show that the presence of a stochastic
magnetic field, or an homogeneous magnetic field, influences the acoustic
oscillation pattern of the CMB anisotropy power spectrum, effectively acting as
a reduction of the baryon fraction. We find that the scalar magnetic energy
density perturbation contribution to the CMB temperature anisotropy is small
compared to the contribution to the CMB -polarization anisotropy.Comment: 17 pages, references added, version accepted for publication in Phys.
Rev.
- …
