390 research outputs found

    Bem1p contributes to secretory pathway polarization through a direct interaction with Exo70p.

    Get PDF
    The exocyst serves to tether secretory vesicles to cortical sites specified by polarity determinants, in preparation for fusion with the plasma membrane. Although most exocyst components are brought to these sites by riding on secretory vesicles as they are actively transported along actin cables, Exo70p displays actin-independent localization to these sites, implying an interaction with a polarity determinant. Here we show that Exo70p directly and specifically binds to the polarity determinant scaffold protein Bem1p. The interaction involves multiple domains of both Exo70p and Bem1p. Mutations in Exo70p that disrupt its interaction with Bem1, without impairing its interactions with other known binding partners, lead to the loss of actin-independent localization. Synthetic genetic interactions confirm the importance of the Exo70p-Bem1p interaction, although there is some possible redundancy with Sec3p and Sec15p, other exocyst components that also interact with polarity determinants. Similar to Sec3p, the actin-independent localization of Exo70p requires a synergistic interaction with the phosphoinositide PI(4,5)P2

    The casein kinases Yck1p and Yck2p act in the secretory pathway, in part, by regulating the Rab exchange factor Sec2p.

    Get PDF
    Sec2p is a guanine nucleotide exchange factor that activates Sec4p, the final Rab GTPase of the yeast secretory pathway. Sec2p is recruited to secretory vesicles by the upstream Rab Ypt32p acting in concert with phosphatidylinositol-4-phosphate (PI(4)P). Sec2p also binds to the Sec4p effector Sec15p, yet Ypt32p and Sec15p compete against each other for binding to Sec2p. We report here that the redundant casein kinases Yck1p and Yck2p phosphorylate sites within the Ypt32p/Sec15p binding region and in doing so promote binding to Sec15p and inhibit binding to Ypt32p. We show that Yck2p binds to the autoinhibitory domain of Sec2p, adjacent to the PI(4)P binding site, and that addition of PI(4)P inhibits Sec2p phosphorylation by Yck2p. Loss of Yck1p and Yck2p function leads to accumulation of an intracellular pool of the secreted glucanase Bgl2p, as well as to accumulation of Golgi-related structures in the cytoplasm. We propose that Sec2p is phosphorylated after it has been recruited to secretory vesicles and the level of PI(4)P has been reduced. This promotes Sec2p function by stimulating its interaction with Sec15p. Finally, Sec2p is dephosphorylated very late in the exocytic reaction to facilitate recycling

    Silent Majority, Violent Majority: The Counter-Revolution in 70s Cinema

    Get PDF
    «There is one question, Inspector Callahan: Why do they call you ‘Dirty Harry’?» Harry, it is explained, «…Hates everybody: Limeys, Micks, Hebes, Fat Degos, Niggers, Honkies, Chinks…especially Spics». Don Siegel’s Dirty Harry (1971), famously labeled «fascist» by prominent film critic Pauline Kael, nonetheless represented something new and unique—the “Silent Majority’s” entry into liberal New Hollywood, a veritable counter-reformation to the new social movements having sprung up in the late Sixties and early Seventies. Far from the traditional American Right, however, and distinctly un-Fascist (in as much as the term means more than a simple epithet), these films acted to unite traditional European philosophy and revolutionary thought with organic conservative American tendencies, resulting in hybrid films which challenged the new social movements, while working within the medium of liberal New American Cinema. The article will address three themes from the era: violence and race in the city, revenge against “liberated women”, and fear and loathing of homosexuality. In each instance, using primary evidence from films and critical reviews from the Seventies and the present era, in addition to American and European theorists, the article will show how the counter-revolution in Seventies cinema failed to expunge the “revolutionary spirit” of the era. Rather, the Silent Majority’s visions of visual violence and reactionary values became part and parcel of the new liberated culture of the “Me Decade,” forever bounding the conservative celluloid revolt to the new cinematic culture

    23 Genes, 23 years later

    Get PDF

    Functional specialization within a vesicle tethering complex: bypass of a subset of exocyst deletion mutants by Sec1p or Sec4p

    Get PDF
    The exocyst is an octameric protein complex required to tether secretory vesicles to exocytic sites and to retain ER tubules at the apical tip of budded cells. Unlike the other five exocyst genes, SEC3, SEC5, and EXO70 are not essential for growth or secretion when either the upstream activator rab, Sec4p, or the downstream SNARE-binding component, Sec1p, are overproduced. Analysis of the suppressed sec3Δ, sec5Δ, and exo70Δ strains demonstrates that the corresponding proteins confer differential effects on vesicle targeting and ER inheritance. Sec3p and Sec5p are more critical than Exo70p for ER inheritance. Although nonessential under these conditions, Sec3p, Sec5p, and Exo70p are still important for tethering, as in their absence the exocyst is only partially assembled. Sec1p overproduction results in increased SNARE complex levels, indicating a role in assembly or stabilization of SNARE complexes. Furthermore, a fraction of Sec1p can be coprecipitated with the exoycst. Our results suggest that Sec1p couples exocyst-mediated vesicle tethering with SNARE-mediated docking and fusion

    ER-phagy requires the assembly of actin at sites of contact between the cortical ER and endocytic pits

    Get PDF
    Fragments of the endoplasmic reticulum (ER) are selectively delivered to the lysosome (mammals) or vacuole (yeast) in response to starvation or the accumulation of misfolded proteins through an autophagic process known as ER-phagy. A screen of the Saccharomyces cerevisiae deletion library identified end3Δ as a candidate knockout strain that is defective in ER-phagy during starvation conditions, but not bulk autophagy. We find that loss of End3 and its stable binding partner Pan1, or inhibition of the Arp2/3 complex that is coupled by the End3-Pan1 complex to endocytic pits, blocks the association of the cortical ER autophagy receptor, Atg40, with the autophagosomal assembly scaffold protein Atg11. The membrane contact site module linking the rim of cortical ER sheets and endocytic pits, consisting of Scs2 or Scs22, Osh2 or Osh3, and Myo3 or Myo5, is also needed for ER-phagy. Both Atg40 and Scs2 are concentrated at the edges of ER sheets and can be cross-linked to each other. Our results are consistent with a model in which actin assembly at sites of contact between the cortical ER and endocytic pits contributes to ER sequestration into autophagosomes.</p

    Myo4p and She3p are required for cortical ER inheritance in Saccharomyces cerevisiae

    Get PDF
    Myo4p is a nonessential type V myosin required for the bud tip localization of ASH1 and IST2 mRNA. These mRNAs associate with Myo4p via the She2p and She3p proteins. She3p is an adaptor protein that links Myo4p to its cargo. She2p binds to ASH1 and IST2 mRNA, while She3p binds to both She2p and Myo4p. Here we show that Myo4p and She3p, but not She2p, are required for the inheritance of cortical ER in the budding yeast Saccharomyces cerevisiae. Consistent with this observation, we find that cortical ER inheritance is independent of mRNA transport. Cortical ER is a dynamic network that forms cytoplasmic tubular connections to the nuclear envelope. ER tubules failed to grow when actin polymerization was blocked with the drug latrunculin A (Lat-A). Additionally, a reduction in the number of cytoplasmic ER tubules was observed in Lat-A–treated and myo4Δ cells. Our results suggest that Myo4p and She3p facilitate the growth and orientation of ER tubules
    corecore