6 research outputs found

    Pengaruh Airfoil dan Jumlah Sudu pada Perancangan Vertikal Axis Wind Turbine (VAWT) untuk Kecepatan Angin Rendah

    Get PDF
    AbstrakSelain potensi angin karena bentuk geografisnya, Indonesia juga memiliki potensi angin yang dapat dimanfaatkan dari  pergerakan arus lalu lintas di jalan raya atau jalan tol. Pergerakan kendaraan  berkecepatan tinggi di jalan raya menghasilkan angin lokal, yang  dapat digunakan untuk menghasilkan energi listrik. Angin lokal ini memiliki variabilitas yang lebih kecil, terutama jika lalu lintas  jalan raya  konstan. Tujuan utama dari penelitian ini adalah untuk mendesain Vertical Axis Wind Turbine yang dapat bekerja pada kecepatan angin rendah. Pada pendekatan teoritis, software Qblade digunakan  untuk menganalisa beberapa jenis Airfoil yaitu NACA 0012, NACA 0013, NACA 0014, NACA 0015, NACA 0016 dengan variasi sudu 2, 3 dan 4 angka pada masing-masing konfigurasi aerodinamis. Koefisien performa turbin angin sumbu vertikal yang optimal dapat diperoleh pada simulasi turbin yang menggunakan airfoil NACA 0016 sebesar 1,33 dengan konfigurasi jumlah sudu adalah empat buah pada TSR 3,5 sehingga diperoleh daya sebesar 87,78 watt pada kecepatan angin 5 m/s dan kecepatan putar 300 rpm. Kata kunci: VAWT, Darrieus, Qblade  AbstractApart from wind potential due to its geographical shape, Indonesia also has wind potential which can be exploited from the movement of traffic flow on highways or toll roads. The movement of high-speed vehicles on the highway generates local wind, which can be used to generate electrical energy. These local winds have less variability, especially if road traffic is constant. The main objective of this research is to design a vertical axis wind turbines to operate in low wind speed. In the theoretical approach, Qblade software is used to analyze several types of airfoils, namely NACA 0012, NACA 0013, NACA 0014, NACA 0015, NACA 0016 with 2, 3 and 4 number blade variations on each aerodynamic configuration. The optimal vertical axis wind turbine performance coefficient can be obtained in a turbine simulation that uses a NACA 0016 airfoil of 1.33 with a configuration of four blades at a TSR of 3.5 so that a power of 87.78 watts is obtained at a wind speed of 5 m/s and rotating speed 300rpm. Keywords: VAWT, Darrieus, Qblade 

    Techno-economic Analysis of Rooftop Photovoltaic System (RPVS) using Thin-Frameless Solar Panels for Household Customers in Indonesia

    Get PDF
    The availability of thin-frameless solar panels on the market today makes the installation of rooftop Photovoltaic (RPVS) systems more attractive. The purpose of this research is to analyze financially the use of thinframeless solar panels for on-grid RPVS by household electricity customers in Indonesia. The investment cost, the maintenance costs, and the electricity cost savings were involved for the financial analysis, such as Internal Rate of Return (IRR), Net Present Value (NPV), and Pay Back Period (PBP). The calculation is carried out for ideal conditions, the direction of a non-ideal rooftop and the yearly increase of electricity prices is 15 %. The analysis results show that the minimum available rooftop area is still sufficient for the rooftop area needs for solar panel placement, the thin solar panels are safer than standard solar panels, and savings on electricity payments for the return on investment of the RPVS is to be attractive with the IRR > 12 %. The average investment cost of the non-ideal condition is 8 % higher than the ideal condition. This study provides an overview to the policymakers and developers in exploiting the potential of RPVS, especially in Indonesia. For future research directions, this study needs to analyze the technical and economic feasibility of using hybrid smart-grid technology with batteries

    The Technical Design Concept of Hi-Tech Cook Stove for Urban Communities using Non-Wood Agricultural Waste as Fuel Sources

    No full text
    The purpose of this study is to conceptualize an urban Hi-Tech Cook-Stove (HTCS) design using agricultural waste. Several steps need to be carried out. First, determine the cooking activities depend on the family size and food categories. Second, calculate the energy required for cooking. Third, determine the mass of biomass fuel required. Fourth, calculate the fuel consumption rate. Fifth, design the dimensions of the stove by considering the ergonomics, easy in manufacturing, installation, etc. Sixth, estimate the volume of each component. The result shows that the fuel supply must adjust the flow rate of fuel, air to fuel ratio controlled by a simple mechanical-electric compressor, monitor the combustion chamber visually/automatically, and the dust must be collected/disposed of automatically/mechanically. HTCS must consider the pellets from the higher heating value and faster of biomass with a certain composition of chopped and fibre, also the safety and comfort, such as overheating control, air exhaust control, combustion control, cooling control. For the future, the HTCS technical design concept must be integrated with the electricity and hot water from solar energy by using a hybrid photovoltaic-thermal (PVT) collector and urban biogas digester in the development of smart grids and smart cities

    Smart Micro-Grid Performance using Renewable Energy

    No full text
    The aim of this research is to determine the performance of PV panels, wind turbines, battery storage and power imported from the grid to the system which will ensure a reliable energy supply, as well as the technical feasibility of a smart microgrid system. Indonesia’s renewable energy potential for electricity reaches 443 GW, where solar energy is the largest potential, namely 4.8 KWh m–2 or equivalent to 112 000 GWp, but only 10 MWp has been utilized. The most basic problem in this system, namely, the uncertainty of wind energy and solar energy, one of the most vital factors in the optimal size of a renewable energy-based smart microgrid system is the reliability of the system being built. The method used in this research is to collect data on the availability of wind energy and solar energy as well as load analysis on the smart microgrid system. As a result, the resulting power output was 6.2 MWh during the experiment. The highest average Performance Ratio (PR) of the solar energy power generation system, namely 77 % in February 2020. Optimized with Battery Life (OBL) model produces a power output of 102.4 kWh and has an overall system efficiency of 81.92 %

    Portable and Customizable Solar Panel Cleaner Design

    No full text
    The purpose of this research is to design a solar panel cleaning tool that is easy to operate and can adjust the size of the installed solar panels. There are several factors that can affect the performance of solar panels, namely the placement of solar panels that cause accumulation of dust, bird droppings and water (salt) stains. The traditional cleaning system is still done manually. Manual cleaning has several disadvantages such as panel damage, risk of worker accidents, movement difficulties, poor maintenance, and others. Therefore, a solar panel cleaning tool is needed on the market that can help optimize solar panel performance and is easy to operate. The method used in this research is to design a prototype solar panel cleaner that can be operated easily and can be adjusted according to the size of the installed solar panel. The result of this research is a prototype of a solar panel cleaning tool with a total mass of 6 kg and easy to operate with a microcontroller system. Effectively this equipment shows the function of the cleaning tool to do its job, namely cleaning dust. Furthermore, this research needs to analyze the techno-economics of addition batteries to facilitate operation
    corecore