27 research outputs found

    Catalyst Initiation in the Oscillatory Carbonylation Reaction

    Get PDF
    Palladium(II) iodide is used as a catalyst in the phenylacetylene oxidative carbonylation reaction that has demonstrated oscillatory behaviour in both pH and heat of reaction. In an attempt to extract the reaction network responsible for the oscillatory nature of this reaction, the system was divided into smaller parts and they were studied. This paper focuses on understanding the reaction network responsible for the initial reactions of palladium(II) iodide within this oscillatory reaction. The species researched include methanol, palladium(II) iodide, potassium iodide, and carbon monoxide. Several chemical reactions were considered and applied in a modelling study. The study revealed the significant role played by traces of water contained in the standard HPLC grade methanol used

    Stoichiometric network analysis of a reaction system with conservation constraints

    Get PDF
    Stoichiometric Network Analysis (SNA) is a powerful method that can be used to examine instabilities in modelling a broad range of reaction systems without knowing the explicit values of reaction rate constants. Due to a lack of understanding, SNA is rarely used and its full potential is not yet fulfilled. Using the oscillatory carbonylation of a polymeric substrate [poly(ethylene glycol) methyl ether acetylene] as a case study, in this work, we consider two mathematical methods for the application of SNA to the reaction models when conservation constraints between species have an important role. The first method takes conservation constraints into account and uses only independent intermediate species, while the second method applies to the full set of intermediate species, without the separation of independent and dependent variables. Both methods are used for examination of steady state stability by means of a characteristic polynomial and related Jacobian matrix. It was shown that both methods give the same results. Therefore, as the second method is simpler, we suggest it as a more straightforward method for the applications. Published by AIP Publishing

    The emerging role of the FKBP5 gene polymorphisms in vulnerability-stress model of schizophrenia: further evidence from a Serbian population

    Get PDF
    Increased reactivity to stress is observed in patients with schizophrenia spectrum disorders and their healthy siblings in comparison with the general population. Additionally, higher levels of neuroticism, as a proposed psychological measure of stress sensitivity, increase the risk of schizophrenia. HPA axis dysregulation is one of the possible mechanisms related to the vulnerability–stress model of schizophrenia, and recent studies revealed a possible role of the functional genetic variants of FK506-binding protein 51 (FKBP5) gene which modulate activity of HPA axis. The purpose of the present study was to investigate impact of FKBP5 on schizophrenia in Serbian patients and to explore relationship between genetic variants and neuroticism by using the case–sibling–control design. In 158 subjects, we measured psychotic experiences, childhood trauma and neuroticism. Nine single-nucleotide polymorphisms (rs9295158, rs3800373, rs9740080, rs737054, rs6926133, rs9380529, rs9394314, rs2766533 and rs12200498) were genotyped. The genetic influence was modeled using logistic regression, and the relationship between genetic variants and neuroticism was assessed by linear mixed model. Our results revealed genetic main effect of FKBP5 risk alleles (A allele of rs9296158 and T allele of rs3800373) and AGTC “risk” haplotype combination (rs9296158, rs3800373, rs9470080 and rs737054, respectively) on schizophrenia, particularly when childhood trauma was set as a confounding factor. We confirmed strong relationship between neuroticism and psychotic experiences in patients and siblings and further showed relationship between higher levels of neuroticism and FKBP5 risk variants suggesting potential link between biological and psychosocial risk factors. Our data support previous findings that trauma exposure shapes FKBP5 impact on schizophreni

    Mathematical modelling of genipin-bovine serum albumin interaction using fluorescence intensity measurements

    Get PDF
    The interaction between genipin and a model protein bovine serum albumin (BSA), with and without the addition of acetic acid, has been studied experimentally and by modelling. The number of amino groups available to react was determined to be 5.6 % of the total number of amino acid building blocks on BSA. Fluorescence intensity was used to record the progress of the reaction over the 24 h, while the modelling study focused on capturing the kinetic profiles of the reaction. The experiments revealed a slow start to the BSA and genipin interaction, that subsequently accelerated in an S-shaped curve which the modelling study linked with the existence of the feedback cycle for both reactive amino groups and genipin. At BSA concentrations ≥30 mg/mL the reaction was accelerated in the presence of acid, while below 30 mg/mL the acidified conditions delayed the onset of the reaction. Contrary to the reaction mechanisms previously proposed, a degree of breakdown of the fluorescent links in the products formed was denoted both experimentally and in a modelling study. This indicated the reversibility of the processes forming fluorescent product/s and suggested feasibility of the successful release of the protein following prospective encapsulation within the genipin-crosslinked hydrogel structure.</p

    Mathematical modelling of genipin-bovine serum albumin interaction using fluorescence intensity measurements

    Get PDF
    The interaction between genipin and a model protein bovine serum albumin (BSA), with and without the addition of acetic acid, has been studied experimentally and by modelling. The number of amino groups available to react was determined to be 5.6 % of the total number of amino acid building blocks on BSA. Fluorescence intensity was used to record the progress of the reaction over the 24 h, while the modelling study focused on capturing the kinetic profiles of the reaction. The experiments revealed a slow start to the BSA and genipin interaction, that subsequently accelerated in an S-shaped curve which the modelling study linked with the existence of the feedback cycle for both reactive amino groups and genipin. At BSA concentrations ≥30 mg/mL the reaction was accelerated in the presence of acid, while below 30 mg/mL the acidified conditions delayed the onset of the reaction. Contrary to the reaction mechanisms previously proposed, a degree of breakdown of the fluorescent links in the products formed was denoted both experimentally and in a modelling study. This indicated the reversibility of the processes forming fluorescent product/s and suggested feasibility of the successful release of the protein following prospective encapsulation within the genipin-crosslinked hydrogel structure.</p

    Screen Printed Electrode Based Detection Systems for the Antibiotic Amoxicillin in Aqueous Samples Utilising Molecularly Imprinted Polymers as Synthetic Receptors

    Get PDF
    Molecularly Imprinted Polymers (MIPs) were synthesised for the selective detection of amoxicillin in aqueous samples. Different functional monomers were tested to determine the optimal composition via batch rebinding experiments. Two different sensor platforms were tested using the same MIP solution; one being bulk synthesized and surface modified Screen Printed Electrodes (SPEs) via drop casting the microparticles onto the electrode surface and the other being UV polymerized directly onto the SPE surface in the form of a thin film. The sensors were used to measure amoxicillin in conjunction with the Heat-Transfer Method (HTM), a low-cost and simple thermal detection method that is based on differences in the thermal resistance at the solid–liquid interface. It was demonstrated that both sensor platforms could detect amoxicillin in the relevant concentration range with Limits of Detection (LOD) of 1.89 ± 1.03 nM and 0.54 ± 0.10 nM for the drop cast and direct polymerisation methods respectively. The sensor platform utilising direct UV polymerisation exhibited an enhanced response for amoxicillin detection, a reduced sensor preparation time and the selectivity of the platform was proven through the addition of nafcillin, a pharmacophore of similar shape and size. The use of MIP-modified SPEs combined with thermal detection provides sensors that can be used for fast and low-cost detection of analytes on-site, which holds great potential for contaminants in environmental aqueous samples. The platform and synthesis methods are generic and by adapting the MIP layer it is possible to expand this sensor platform to a variety of relevant targets

    Variation in the prices of oncology medicines across Europe and the implications for the future

    Get PDF
    Introduction/ Objectives: There are increasing concerns among health authorities regarding the sustainability of healthcare systems with growing expenditure on medicines including new high-priced oncology medicines. Medicine prices among European countries may be adversely affected by their population size and economic power to negotiate. There are also concerns that prices of patented medicines do not change once the prices of medicines used for negotiations substantially change. This needs to be investigated as part of the implications of low-cost generic oncology medicines. Methodology: Analysing principally reimbursed prices of patented oral oncology medicines (imatinib, erlotinib and fludarabine) between 2013 and 2017 across Europe and exploring correlations between GDP, population size, and prices. Comparing the findings with previous research regarding prices of oral generic oncology medicines. Results: The prices of imatinib, erlotinib and fludarabine did vary among European countries but showed limited price erosion over time in the absence of generics. There appeared to be no correlation between population size and prices. However, higher prices were seen among countries with higher GDP per capita which is a concern for lower income countries referencing these. Discussion and Conclusion: It is likely that the limited price erosion for patented oncology medicines will change across Europe with increased scrutiny over their prices and value as more medicines used for pricing decisions lose their patents combined with growing pressures on the oncology drug budget. In addition, discussions will continue regarding fair pricing for new oncology medicines and other approaches given ever rising prices with research showing substantial price reductions for oral oncology medicines (up to -97.8% for imatinib) once generics become available. We are also seeing appreciable price reductions for biosimilars further increasing the likelihood of these developments

    Fluorescence Imaging in Genipin Crosslinked Chitosan–Poly(vinyl pyrrolidone) Hydrogels

    No full text
    Recent research has identified genipin as a promising natural crosslinking agent for biocompatible hydrogels as genipin is significantly less cytotoxic than current synthetic crosslinking agents, such as glutaraldehyde. Conveniently, fluorophores can be produced when genipin crosslinks. In this study, fluorescence intensity measurements of genipin crosslinked chitosan-poly(vinyl pyrrolidone) hydrogels have been explored as a dynamic, in situ method for tracing sol-gel transition. These pH-responsive smart materials have a future in medical applications, in particular in tissue engineering and drug delivery, where methods to follow the process in situ and in real-time are crucial for future advancement. Samples were prepared using deionised water, pH 4, and pH 10 solutions, and studied at 24 and 37 °C over a 24 h period. Both temperature and pH have been found to affect sol-gel transition in the hydrogels studied. The transition from acidic (pH 4) to basic (pH 10) solution resulted in reduced fluorescence intensity suggesting that, under more basic conditions, genipin molecules self-polymerise, reducing the number of molecules available for reaction with the amino groups of chitosan. Three-dimensional representations of the fluorescence present in a hydrogel sample have also been produced from the data, enabling the visualisation of variation in fluorescence with time at the surface of the hydrogel

    Genipin Cross-Linked Chitosan-Polyvinylpyrrolidone Hydrogels: Influence of Composition and Postsynthesis Treatment on pH Responsive Behaviour

    Get PDF
    Understanding the factors that influence the pH responsive behaviour of biocompatible cross-linked hydrogel networks is essential when aiming to synthesise a mechanically stable and yet stimuli responsive material suitable for various applications including drug delivery and tissue engineering. In this study the behaviour of intelligent chitosan-polyvinylpyrrolidone-genipin cross-linked hydrogels is examined as a function of their composition and postsynthesis treatment. Hydrogels are synthesised with varying amounts of each component (chitosan, polyvinylpyrrolidone, and genipin) and their response in a pH 2 buffer is measured optically. The influence of postsynthesis treatment on stability and smart characteristics is assessed using selected hydrogel samples synthesised at 30, 40, and 50°C. After synthesis, samples are exposed to either continuous freezing or three freeze-thaw cycles resulting in increased mechanical stability for all samples. Further morphological and mechanical characterisations have aided the understanding of how postsynthesis continual freezing or freeze-thaw manipulation affects network attributes
    corecore