1,447 research outputs found

    Identification of Nonlinear Systems: Volterra Series Simplification

    Get PDF
    Traditional measurement of multimedia systems, e.g. linear impulse response and transfer function, are sufficient but not faultless. For these methods the pure linear system is considered and nonlinearities, which are usually included in real systems, are disregarded. One of the ways to describe and analyze a nonlinear system is by using Volterra Series representation. However, this representation uses an enormous number of coefficients. In this work a simplification of this method is proposed and an experiment with an audio amplifier is shown.

    IoT applications utilizing excess heat in electrical lighting fixtures

    Get PDF
    The development of IoT instrumentation will always be strongly influenced by the properties of the power supply system. A large number of IoT nodes creates a danger of extra expenditures when changing the battery. For this reason, the development of supply nodes tends to prefer systems capable of battery-less operation, obtaining energy from other sources. This article deals with an alternative method of electrical energy acquisition form the excessive heat appearing in LED lighting fixtures utilizing large-area LED chips. A Peltier cell was used for the conversion of heat energy to electrical energy, connected as thermo-electric generator into the thermal chain

    HIGH ACCURACY FREQUENCY DETERMINATION FROM DISCRETE SPECTRA

    Get PDF
    The problem of determining the characteristics of a sine wave from its discrete spectrum is considered. The nontriviality of the problem is caused basicly by a phenomenon called spectral leakage, that is, by the fact that the spectral envelope of a single sinusoid forms a bell-shaped curve, even in the ideal noiseless case. In the paper a simple and self-contained treatment of spectral leakage is presented and a computationally efficient frequency estimation method is derived, taking into consideration different types of time-domain windows

    Mixing-induced anisotropic correlations in molecular crystalline systems

    Full text link
    We investigate the structure of mixed thin films composed of pentacene (PEN) and diindenoperylene (DIP) using X-ray reflectivity and grazing incidence X-ray diffraction. For equimolar mixtures we observe vanishing in-plane order coexisting with an excellent out-of-plane order, a yet unreported disordering behavior in binary mixtures of organic semiconductors, which are crystalline in their pure form. One approach to rationalize our findings is to introduce an anisotropic interaction parameter in the framework of a mean field model. By comparing the structural properties with those of other mixed systems, we discuss the effects of sterical compatibility and chemical composition on the mixing behavior, which adds to the general understanding of interactions in molecular mixtures.Comment: 5 pages, 5 figures, accepted by Phys. Rev. Let

    The 'one-pot' preparation of substituted benzofurans

    Get PDF
    A simple one-pot procedure has been elaborated for the preparation of substituted benzofurans starting from halogenated phenols, and this method has been applied successfully to the total synthesis of dehydrotremetone, a natural product of White Snakeroot

    Dynamical Scenarios for Chromosome Bi-orientation

    Get PDF
    AbstractChromosome bi-orientation at the metaphase spindle is essential for precise segregation of the genetic material. The process is error-prone, and error-correction mechanisms exist to switch misaligned chromosomes to the correct, bi-oriented configuration. Here, we analyze several possible dynamical scenarios to explore how cells might achieve correct bi-orientation in an efficient and robust manner. We first illustrate that tension-mediated feedback between the sister kinetochores can give rise to a bistable switch, which allows robust distinction between a loose attachment with low tension and a strong attachment with high tension. However, this mechanism has difficulties in explaining how bi-orientation is initiated starting from unattached kinetochores. We propose four possible mechanisms to overcome this problem (exploiting molecular noise; allowing an efficient attachment of kinetochores already in the absence of tension; a trial-and-error oscillation; and a stochastic bistable switch), and assess their impact on the bi-orientation process. Based on our results and supported by experimental data, we put forward a trial-and-error oscillation and a stochastic bistable switch as two elegant mechanisms with the potential to promote bi-orientation both efficiently and robustly

    Electronic structure of ferromagnetic semiconductor Ga1-xMnxAs probed by sub-gap magneto-optical spectroscopy

    Get PDF
    We employ Faraday and Kerr effect spectroscopy in the infrared range to investigate the electronic structure of Ga1-xMnxAs near the Fermi energy. The band structure of this archetypical dilute-moment ferromagnetic semiconductor has been a matter of controversy, fueled partly by previous measurements of the unpolarized infrared absorption and their phenomenological impurity-band interpretation. The infrared magneto-optical effects we study arise directly from the spin-splitting of the carrier bands and their chiral asymmetry due to spin-orbit coupling. Unlike the unpolarized absorption, they are intimately related to ferromagnetism and their interpretation is much more microscopically constrained in terms of the orbital character of the relevant band states. We show that the conventional theory of the disordered valence band with dominant As p-orbital character and coupled by kinetic-exchange to Mn local moments accounts semi-quantitatively for the overall characteristics of the measured infrared magneto-optical spectra.Comment: 4 pages 3 figure
    corecore