
1 Introduction
As the nonlinear properties of the analyzed multime-

dia/audio system are unknown, the system is considered as a
black box. For such a system, only input and output are ob-
servable. This black box is time invariant which means that
the properties of the black box do not depend explicitly on
time. Signal y(t) is the system’s response at the output to an in-
put signal x(t). Any given input xi(t) produces a unique output
yi(t). Considering a nonlinear system, not only one input x(t)
can produce the same output y(t). However, the converse is
not true, i.e., there is a unique response y(t) to input x(t). The
black box with its properties can be represented as shown in
Fig. 1, where the symbol Hn is called a Volterra operator. This
Volterra series theory was introduced in [1] and later used in
electro-acoustics with maximum length sequence excitation
[2].

The relation between the output and the input can be ex-
pressed in the form given by the total sum
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represents n-dimensional convolution of the input signal x(t)
and n-dimensional Volterra kernel hn(�1,..., �n). The symbol Hn
represents the n-th order Volterra operator. If the total Volterra
series sum is itemized into the sum of the separated convolu-
tions, the relation between the input and the output will be:
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2 First-order Volterra systems
For this section only a causal, stable and LTI (linear time

invariant) first-order Volterra system will be considered. This can
be expressed as

y t x t( ) [ ( )]� H1 (4)
which can be expanded by using Volterra operator H1 in the
form

y t h x t( ) ( ) ( )� �
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This equation represents a simple one-dimensional con-
volution, which determines a pure linear system. The first-or-
der Volterra system is in general a linear system, in which the
first-order Volterra kernel h1(t) is called the impulse response of
the system. This impulse response can be obtained by Dirac
impulse excitation �(t), from

h t t1( ) [ ( )]� H1 � (6)

3 The second-order Volterra system
Since the LTI system keeps rules of linear combination,

the response to a linear combination of input signals equals a
linear combination of the outputs. The second-order system
does not keep the rules of linear combination, but the rules of
bilinear combination. The response to a linear combination
of input signals equals a bilinear combination of the output
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Fig. 1: Schematic representation of a Volterra series model
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signals. Let us take into consideration a causal, stable, sec-
ond-order system, which is defined by

y t x t( ) [ ( )]� H2 . (7)

Operator H2 is called a second-order Volterra operator. This
operator is expressed by formula Eq. (2)
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The function h2(�1, �2) is called a second-order Volterra
kernel. Generally, this function needs not to be axis-symmet-
ric by axis h2(�, �), but for reasons of definiteness it would be
better to consider this function as axis-symmetric by axis
h2

*(�1, �2). The symmetrization can be done by

� 	h h h2 1 2 2 1 2 2 2 1
1
2
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From now on, the only axis-symmetric kernels will be con-
sidered. This can be represented as

h h2 1 2 2 2 1( , ) ( , )� � � �� . (10)

As is known from the theory of linear systems and as is de-
scribed in Eq. (6), the impulse response of a first-order system
(linear system) can be obtained as a response to a Dirac
impulse.

Let us take into consideration the signal x t t( ) ( )� � , which
is brought into the input of a second-order system. The out-
put is given by
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The response to the Dirac Impulse does not determine
the second-order system, but represents just a slice through
the axis of second-order Volterra kernel (see Fig. 2).

Let the input signal x(t) be given by the sum of two signals
x1(t)�x2(t). The response to such a signal is given by
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where H2{•} is a bilinear Volterra operator, which is defined by
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Thence

 �H H2 2x t x t x t1 1 1( ), ( ) [ ( )]� , (14)

thus a bilinear Volterra operator applied to two same signals is
simply speaking a second-order Volterra operator.

Generally, any higher-order system can be considered, but
the complexity increases as the order of the system increases.
A representation of the higher order is also more difficult to
imagine as the dimension increases in size. The analysis
consisting of finding all other kernels is based on finding the
higher-order kernel and then recursively on finding lower-
-order kernels.

4 A simplified model
Using the whole Volterra model introduces many difficul-

ties into both identifying and reconstructing a nonlinear sys-
tem. Since the n-th Volterra kernel is a function of n variables,
the model which represents the system has to contain many
coefficients necessary to determine the system. This section
describes a simplified model, which reduces the number of
coefficients required for a Volterra series representation. The
first simplification replaces the n-th Volterra kernel by its
symmetric representation. The second-order Volterra kernel
will be reduced to

h h h2 1 2 2 1 2 2( , ) ( ) ( )� � � �� �  � . (15)
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Fig. 2: Example of second-order Volterra kernel

a) sub-kernel b) kernel

Fig. 3: A demonstration of kernel simplification



This is demonstrated in Fig. 3, which shows the sub-kernel
�h2( )� and kernel h2 1 2( , )� � .

Generally for higher Volterra kernels it stands that

h hn n n
n
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The output signal of the second-order system is in Eq. (17)
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(17) The scheme from Fig. 1 can be simplified by applying
the simplifications described above. The simplified Volterra
model is not able to determine all the nonlinearities in the
same manner as the full Volterra model [1], but it will be
shown that, in some cases, such as analysis of an amplifier in
weakly nonlinear mode, the simplified model is sufficiently
precise.
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Fig. 4: Scheme of measured system (amplifier)

a) b)

c) d)

Fig. 5: Comparison of responses to a) 200 Hz and 1 kHz tones, up to �150 dB; b) 200 Hz and 1 kHz tones, up to �100 dB; c) 500 Hz and
2 kHz tones, up to �100 dB; d) 1 kHz and 5 kHz tones, up to �100 dB; SONY SDP-300 – above, model – below



Then, the output y(t) is then given by
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which can be rewritten into a shortened form

y t h x tn

n

n

N
( ) ( ) ( )� � �

�

�

�
�

�

�

�
�

��

�

�
�� � � �d

1

. (19)

5 Measuring non-linear audio systems
The simplification of Volterra kernels described above

has been tested on a real audio system with nonlinear behav-
ior. The method described above gives sufficiently precise
results with respect to a weak nonlinear mode. If the higher
kernels are too feeble, i.e. if the nonlinearity is weak, it is
better to use the simplest model, as the higher kernels are
near the level of noise. The simplified method for determin-
ing the sub-kernels has been verified on surround processor
SONY SDP-E300, used in amplifier mode. The measurement
scheme for identifying of Volterra sub-kernels is shown in
Fig. 4. A simple method using a workstation with an audio
card has been used to generate and record input and output
signals.

To verify the simplified Volterra model a comparison
between an audio amplifier and the Volterra model was per-
formed. The input signal consisting of two sinusoids was put
into both the audio amplifier and the model. The output
spectrum of the two models was compared. The results are
shown in Fig. 5.

6 Conclusion
The method for identifying nonlinear systems using a

simplified Volterra Series representation has been presented
and tested on a real (low-cost) audio system. The results of the
nonlinear model are in some cases (weak nonlinearities) very
similar to the real system. In cases of more complex nonline-
arities the model gives worse results, and the simplification is
not appropriate for use. The simplification of kernels gives
better results in systems with weak nonlinearities, which can
be found in multimedia systems such as amplifiers, loud-
speakers, etc.
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