17 research outputs found

    Sterols and Triterpenes: Antiviral     Potential Supported by In-Silico Analysis

    No full text
    The acute respiratory syndrome caused by the novel coronavirus (SARS-CoV-2) caused severe panic all over the world. The coronavirus (COVID-19) outbreak has already brought massive human suffering and major economic disruption and unfortunately, there is no specific treatment for COVID-19 so far. Herbal medicines and purified natural products can provide a rich resource for novel antiviral drugs. Therefore, in this review, we focused on the sterols and triterpenes as potential candidates derived from natural sources with well-reported in vitro efficacy against numerous types of viruses. Moreover, we compiled from these reviewed compounds a library of 162 sterols and triterpenes that was subjected to a computer-aided virtual screening against the active sites of the recently reported SARS-CoV-2 protein targets. Interestingly, the results suggested some compounds as potential drug candidates for the development of anti-SARS-CoV-2 therapeutics

    Bioassay-Guided Fractionation with Antimalarial and Antimicrobial Activities of Paeonia officinalis

    No full text
    Bioassay-guided fractionation technique of roots of Paeonia officinalis led to isolation and structure elucidation of seven known compounds, including four monoterpene glycosides: lactiflorin (1), paeoniflorin (4), galloyl paeoniflorin (5), and (Z)-(1S,5R)-β-pinen-10-yl β-vicianoside (7); two phenolics: benzoic acid (2) and methyl gallate (3); and one sterol glycoside: β-sitosterol 3-O-β-D-glucopyranoside (6). The different fractions and the isolated compounds were evaluated for their antimicrobial and antimalarial activities. Fraction II and III showed antifungal activity against Candida neoformans with IC50 values of 28.11 and 74.37 µg/mL, respectively, compared with the standard fluconazole (IC50 = 4.68 µg/mL), and antibacterial potential against Pseudomonas aeruginosa (IC50 = 20.27 and 24.82 µg/mL, respectively) and Klebsiella pneumoniae (IC50 = 43.21 and 94.4 µg/mL, respectively), compared with the standard meropenem (IC50 = 28.67 and 43.94 µg/mL, respectively). Compounds 3 and 5 showed antimalarial activity against Plasmodium falciparum D6 with IC50 values of 1.57 and 4.72 µg/mL and P. falciparum W2 with IC50 values of 0.61 and 2.91 µg/mL, respectively, compared with the standard chloroquine (IC50 = 0.026 and 0.14 µg/mL, respectively)

    Bioactive natural products of marine sponges from the Genus Hyrtios

    No full text
    Marine sponges are known as a rich source for novel bioactive compounds with valuable pharmacological potential. One of the most predominant sponge genera is Hyrtios, reported to have various species such as Hyrtios erectus, Hyrtios reticulatus, Hyrtios gumminae, Hyrtios communis, and Hyrtios tubulatus and a number of undescribed species. Members of the genus Hyrtios are a rich source of natural products with diverse and valuable biological activities, represented by different chemical classes including alkaloids, sesterterpenes and sesquiterpenes. This review covers the literature until June 2016, providing a complete survey of all compounds isolated from the genus Hyrtios with their corresponding biological activities whenever applicable

    Network Pharmacological Analysis of the Red Sea Sponge Hyrtios erectus Extract to Reveal Anticancer Efficacy of Corresponding Loaded Niosomes

    No full text
    In this study, the LC-HRMS-assisted chemical profiling of Hyrtios erectus sponge led to the annotation of eleven major compounds (1–11). H. erectus-derived crude extract (HE) was tested in vitro for its antiproliferative activity against three human cancer cell lines, Hep-G2 (human liver cancer cell line), MCF-7 (breast cancer cell line), and Caco-2 (colon cancer cell line), before and after encapsulation within niosomes. Hyrtios erectus extract showed moderate in vitro antiproliferative activities towards the studied cell lines with IC50 values 18.5 ± 0.08, 15.2 ± 0.11, and 13.4 ± 0.12, respectively. The formulated extract-containing niosomes (size 142.3 ± 10.3 nm, PDI 0.279, and zeta potential 22.8 ± 1.6) increased the in vitro antiproliferative activity of the entrapped extract significantly (IC50 8.5 ± 0.04, 4.1 ± 0.07, and 3.4 ± 0.05, respectively). A subsequent computational chemical study was performed to build a sponge–metabolite–targets–cancer diseases network, by focusing on targets that possess anticancer activity toward the three cancer types: breast, colon, and liver. Pubchem, BindingDB, and DisGenet databases were used to build the network. Shinygo and KEGG databases in addition to FunRich software were used for gene ontology and functional analysis. The computational analysis linked the metabolites to 200 genes among which 147 genes related to cancer and only 64 genes are intersected in the three cancer types. The study proved that the co-occurrence of compounds 1, 2, 3, 7, 8, and 10 are the most probable compounds possessing cytotoxic activity due to large number of connections to the intersected cytotoxic genes with edges range from 9-14. The targets possess the anticancer effect through Pathways in cancer, Endocrine resistance and Proteoglycans in cancer as mentioned by KEGG and ShinyGo 7.1 databases. This study introduces niosomes as a promising strategy to promote the cytotoxic potential of H. erectus extract

    Wound Healing and Antioxidant Capabilities of Zizyphus mauritiana Fruits: In-Vitro, In-Vivo, and Molecular Modeling Study

    No full text
    LC-HRMS-assisted chemical profiling of Zizyphus mauritiana fruit extract (ZFE) led to the dereplication of 28 metabolites. Furthermore, wound healing activity of ZFE in 24 adult male New Zealand Dutch strain albino rabbits was investigated in-vivo supported by histopathological investigation. Additionally, the molecular mechanism was studied through different in-vitro investigations as well as, studying both relative gene expression and relative protein expression patterns. Moreover, the antioxidant activity of ZFE extract was examined using two in-vitro assays including hydrogen peroxide and superoxide radical scavenging activities that showed promising antioxidant potential. Topical application of the extract on excision wounds showed a significant increase in the wound healing rate (p < 0.001) in comparison to the untreated and MEBO®-treated groups, enhancing TGF-β1, VEGF, Type I collagen expression, and suppressing inflammatory markers (TNF-α and IL-1β). Moreover, an in silico molecular docking against TNFα, TGFBR1, and IL-1β showed that some of the molecules identified in ZFE can bind to the three wound-healing related protein actives sites. Additionally, PASS computational calculation of antioxidant activity revealed potential activity of three phenolic compounds (Pa score > 0.5). Consequently, ZFE may be a potential alternative medication helping wound healing owing to its antioxidant and anti-inflammatory activities

    Antiulcer Potential of <i>Psidium guajava</i> Seed Extract Supported by Metabolic Profiling and Molecular Docking

    No full text
    One of the most severe human health problems is gastric ulceration. The main aim of our study is to explore the gastroprotective effect of the Psidium guajava seeds extract (PGE). Metabolic profiling based on LC-HRMS for the extract led to the dereplication of 23 compounds (1–23). We carried out a gastric ulcer model induced by indomethacin in male albino rats in vivo and the extract of PGE was investigated at a dose of 300 mg/kg in comparison to cimetidine (100 mg/kg). Furthermore, the assessment of gastric mucosal lesions and histopathology investigation of gastric tissue was done. It has been proved that Psidium guajava seeds significantly decreased the ulcer index and protected the mucosa from lesions. The antiulcer effect of Psidium guajava seed extract, which has the power of reducing the ensuing inflammatory reactions, can counteract the inflammation induced by indomethacin by the downregulation of relative genes expression (IL-1β, IL-6, and TNF-α). Moreover, PGE significantly downregulated the increased COX-2, TGF-β, and IGF-1 relative genes expression, confirming its beneficial effect in ulcer healing. Moreover, the possible PGE antioxidant potential was determined by in vitro assays using hydrogen peroxide and superoxide radical scavenging and revealed high antioxidant potential. Additionally, on the putatively annotated metabolites, an in silico study was conducted, which emphasized the extract’s antiulcer properties might be attributed to several sterols such as stigmasterol and campesterol. The present study provided evidence of Psidium guajava seeds considered as a potential natural gastroprotective agent

    New cytotoxic dammarane type saponins from Ziziphus spina-christi

    No full text
    Abstract Cancer is the world's second-leading cause of death. Drug development efforts frequently focus on medicinal plants since they are a valuable source of anticancer medications. A phytochemical investigation of the edible Ziziphus spina-christi (F. Rhamnaceae) leaf extract afforded two new dammarane type saponins identified as christinin E and F (1, 2), along with the known compound christinin A (3). Different cancer cell lines, such as lung cancer (A549), glioblastoma (U87), breast cancer (MDA-MB-231), and colorectal carcinoma (CT-26) cell lines, were used to investigate the extracted compounds' cytotoxic properties. Our findings showed significant effects on all the tested cell lines at varying concentrations (1, 5, 10, and 20 µg/mL). The three compounds exhibited potent activity at low concentrations (< 10 μg/mL), as evidenced by their low IC50 values. To further investigate the complex relationships between these identified cancer-relevant biological targets and to identify critical targets in the pathogenesis of the disease, we turned to network pharmacology and in silico-based investigations. Following this, in silico-based analysis (e.g., inverse docking, ΔG calculation, and molecular dynamics simulation) was performed on the structures of the isolated compounds to identify additional potential targets for these compounds and their likely interactions with various signalling pathways relevant to this disease. Based on our findings, Z. spina-christi's compounds showed promise as potential anti-cancer therapeutic leads in the future

    Targeting 3CLpro and SARS-CoV-2 RdRp by Amphimedon sp. Metabolites: A Computational Study

    No full text
    Since December 2019, novel coronavirus disease 2019 (COVID-19) pandemic has caused tremendous economic loss and serious health problems worldwide. In this study, we investigated 14 natural compounds isolated from Amphimedon sp. via a molecular docking study, to examine their ability to act as anti-COVID-19 agents. Moreover, the pharmacokinetic properties of the most promising compounds were studied. The docking study showed that virtually screened compounds were effective against the new coronavirus via dual inhibition of SARS-CoV-2 RdRp and the 3CL main protease. In particular, nakinadine B (1), 20-hepacosenoic acid (11) and amphimedoside C (12) were the most promising compounds, as they demonstrated good interactions with the pockets of both enzymes. Based on the analysis of the molecular docking results, compounds 1 and 12 were selected for molecular dynamics simulation studies. Our results showed Amphimedon sp. to be a rich source for anti-COVID-19 metabolites

    Moringa extract reverses pilocarpine-induced hippocampal sclerosis in rats with temporal lobe epilepsy

    No full text
    The horseradish tree “Moringa oleifera” is the most nutritious terrestrial plant around the globe. Although native to India, its fast growth and drought resistance ability enabled the plant to be cultivated worldwide. In the current study, we report on the isolation of a new phenolic methyl ester namely moringinine A (1) along with four other known compounds viz. caffeic acid (2), ferulic acid (3), 4-hydroxybenzonitrile (4), and 4-hydroxyphenyl acetic acid (5) from Moringa seeds. The later compound was first to be isolated from family Moringaceae. Compounds identification was guided by interplay of NMR and HR-ESI-MS analysis. Anti-epileptic studies conducted in vivo showed that the extract attenuates convulsions by suppressing stress–induced pro-inflammatory markers TNF-α, IL-1β, IL-6, and IFN-ɣ whereas upregulating the anti-inflammatory markers TGF-β and IL-10 in the hippocampal tissues of epileptic rats. The isolated compounds were subjected to computational studies through docking on lactate dehydrogenase A (LDH) and interleukin-6 (IL-6), where all showed binding modes and interaction energies comparable to those of the reference drug diazepam. ADME investigation revealed good pharmacokinetic and drug-likeness properties. These results show that Moringa oleifera seeds could potentially be used as adjuvant in the management of epilepsy
    corecore