21 research outputs found

    Electron drift-mobility measurements in polycrystalline CuIn1-xGaxSe2 solar cells

    Get PDF
    We report photocarrier time-of-flight measurements of electron drift mobilities for the p-type CuIn1-xGaxSe2 films incorporated in solar cells. The electron mobilities range from 0.02 to 0.05 cm^2/Vs and are weakly temperature-dependent from 100–300 K. These values are lower than the range of electron Hall mobilities (2-1100 cm2/Vs) reported for n-type polycrystalline thin films and single crystals. We propose that the electron drift mobilities are properties of disorder-induced mobility edges and discuss how this disorder could increase cell efficiencies

    The effect of Zn excess on kesterite solar cells

    Get PDF
    a b s t r a c t Accuracy in composition control has been one of the top issues for fabricating high-performance kesterite (Cu 2 ZnSn(Se,S) 4 ) solar cells. A detailed understanding of the effect of Zn excess on device performance has not yet been demonstrated. Thus, specific criteria for high-performance devices, in particular discriminating between the effects of Zn-rich features at the front versus the back of the absorber, are desired. In this study, we report that co-evaporated kesterite absorbers can demonstrate high device efficiency despite the presence of large quantities of ZnSe. However, the benign presence of ZnSe is found to be conditional. While large ZnSe grains on the back of the absorbers are not harmful to device performance, the ZnSe grains produced by excess Zn near the end of the deposition degrade the cell efficiency from 8% level to 6% level (without anti-reflection coatings). The other effect related to excess Zn on the front of absorber is the facilitation of breakdown in lower reverse bias. The breakdown indicated here occurs only under the illumination of blue photons, and to our best knowledge has not been reported before. The exact mechanism of the breakdown remains open, but it is demonstrated to be related to the photoconductivity of CdS, and is thus possibly a symptom of lateral defect issues in the absorber, caused by the overdose of Zn. The same type of issue contributing to the breakdown may also be responsible for part of the parasitic loses at the working voltage, and therefore warrants further research

    Zn-Se-Cd-S Interlayer Formation at the CdS/Cu₂ZnSnSe₄ Thin-Film Solar Cell Interface

    Get PDF
    The chemical structure of the CdS/Cu2ZnSnSe4 (CZTSe) interface was studied by a combination of electron and X-ray spectroscopies with varying surface sensitivity. We find the CdS chemical bath deposition causes a "redistribution" of elements in the proximity of the CdS/CZTSe interface. In detail, our data suggest that Zn and Se from the Zn-terminated CZTSe absorber and Cd and S from the buffer layer form a Zn-Se-Cd-S interlayer. We find direct indications for the presence of Cd-S, Cd-Se, and Cd-Se-Zn bonds at the buffer/absorber interface. Thus, we propose the formation of a mixed Cd(S,Se)-(Cd,Zn)Se interlayer. We suggest the underlying chemical mechanism is an ion exchange mediated by the amine complexes present in the chemical bath

    2nd Conference on the Science and Technology of Thin Film Superconductors

    No full text

    High‐Efficiency GaAs Photoanodes

    No full text
    corecore