846 research outputs found

    Multiple scattering of polarized radiation by non-spherical grains: first results

    Get PDF
    We present the first numerical radiative transfer simulation of multiple light scattering in dust configurations containing aligned non-spherical (spheroidal) dust grains. Such models are especially important if one wants to explain the circular polarization of light, observed in a variety of astronomical objects. The radiative transfer problem is solved on the basis of the Monte Carlo method. Test simulations, confirming the correct numerical implementation of the scattering mechanism, are presented. As a first application, we investigate the linear and circular polarization of light coming from a spherical circumstellar shell. This shell contains perfectly aligned prolate or oblate spheroidal grains. The most remarkable features of the simulated linear polarization maps are so-called polarization null points where the reversal of polarization occurs. They appear in the case when the grain alignment axis is perpendicular to the line of sight. The maps of circular polarization have a sector-like structure with maxima at the ends of lines inclined to the grain alignment axis by \pm 45\degr.Comment: 13 pages, 14 figures, accepted by A&

    BVR photometry of the resolved dwarf galaxy Ho IX

    Full text link
    We present BVR CCD photometry down to limiting magnitude B=23.5 mag for 232 starlike objects and 11 diffuse objects in a 5.4' x 5.4' field of Ho IX. The galaxy is a gas-rich irregular dwarf galaxy possibly very close to M 81, which makes it especially interesting in the context of the evolution of satellite galaxies and the accretion of dwarf galaxies. Investigations of Ho IX were hampered by relatively large contradictions in the magnitude scale between earlier studies. With our new photometry we resolved these discrepancies. The color magnitude diagram (CMD) of Ho IX is fairly typical of a star-forming dwarf irregular, consistent with earlier results. Distance estimates from our new CMD are consistent with Ho IX being very close to M 81 and therefore being a definite member of the M 81 group, apparently in very close physical proximity to M 81.Comment: 9 pages, 8 figures, uses aa.cls, A&A in pres

    A comprehensive evaluation of the activity and selectivity profile of ligands for RGD-binding integrins

    Get PDF
    Integrins, a diverse class of heterodimeric cell surface receptors, are key regulators of cell structure and behaviour, affecting cell morphology, proliferation, survival and differentiation. Consequently, mutations in specific integrins, or their deregulated expression, are associated with a variety of diseases. In the last decades, many integrin-specific ligands have been developed and used for modulation of integrin function in medical as well as biophysical studies. The IC50-values reported for these ligands strongly vary and are measured using different cell-based and cell-free systems. A systematic comparison of these values is of high importance for selecting the optimal ligands for given applications. In this study, we evaluate a wide range of ligands for their binding affinity towards the RGD-binding integrins avß3, avß5, avß6, avß8, a5ß1, aIIbß3, using homogenous ELISA-like solid phase binding assay.Postprint (published version

    Ultrasonic Dispersion and Relaxation in Morpholine

    Get PDF
    In order to rationalize the influence of FeIII contamination on labeling with the 68Ga eluted from 68Ge/68Ga-generator, a detailed investigation was carried out on the equilibrium properties, formation and dissociation kinetics of GaIII- and FeIII-complexes of 1,4,7-triazacyclononane-1,4,7-tris(methylene[2-carboxyethylphosphinic acid]) (H6TRAP). The stability and protonation constants of the [Fe(TRAP)]3− complex were determined by pH-potentiometry and spectrophotometry by following the competition reaction between the TRAP ligand and benzhydroxamic acid (0.15 M NaNO3, 25°C). The formation rates of [Fe(TRAP)] and [Ga(TRAP)] complexes were determined by spectrophotometry and 31P-NMR spectroscopy in the pH range 4.5–6.5 in the presence of 5–40 fold HxTRAP(x−6) excess (x = 1 and 2, 0.15 M NaNO3, 25°C). The kinetic inertness of [Fe(TRAP)]3− and [Ga(TRAP)]3− was examined by the trans-chelation reactions with 10 to 20-fold excess of HxHBED(x−4) ligand by spectrophotometry at 25°C in 0.15 M NaCl (x = 0,1 and 2). The stability constant of [Fe(TRAP)]3− (logKFeL = 26.7) is very similar to that of [Ga(TRAP)]3− (logKGaL = 26.2). The rates of ligand exchange reaction of [Fe(TRAP)]3− and [Ga(TRAP)]3− with HxHBED(x−4) are similar. The reactions take place quite slowly via spontaneous dissociation of [M(TRAP)]3−, [M(TRAP)OH]4− and [M(TRAP)(OH)2]5− species. Dissociation half-lives (t1/2) of [Fe(TRAP)]3− and [Ga(TRAP)]3− complexes are 1.1 × 105 and 1.4 × 105 h at pH = 7.4 and 25°C. The formation reactions of [Fe(TRAP)]3− and [Ga(TRAP)]3− are also slow due to the formation of the unusually stable monoprotonated [*M(HTRAP)]2− intermediates [*logKGa(HL) = 10.4 and *logKFe(HL) = 9.9], which are much more stable than the [*Ga(HNOTA)]+ intermediate [*logKGa(HL) = 4.2]. Deprotonation and transformation of the monoprotonated [*M(HTRAP)]2− intermediates into the final complex occur via OH−-assisted reactions. Rate constants (kOH) characterizing the OH−-driven deprotonation and transformation of [* Ga(HTRAP)]2− and [*Fe(HTRAP)]2− intermediates are 1.4 × 105 M−1s−1 and 3.4 × 104 M−1s−1, respectively. In conclusion, the equilibrium and kinetic properties of [Fe(TRAP)] and [Ga(TRAP)] complexes are remarkably similar due to the close physico-chemical properties of FeIII and GaIII-ions. However, a slightly faster formation of [Ga(TRAP)] over [Fe(TRAP)] provides a rationale for a previously observed, selective complexation of 68GaIII in presence of excess FeIII

    Investigations of closed source registration method of depth sensor technologies for human-robot collaboration

    Get PDF
    Productive teaming is the new form of human-robot interaction. The multimodal 3D imaging has a key role in this to gain a more comprehensive understanding of production system as well as to enable trustful collaboration from the teams. For a complete scene capture, the registration of the image modalities is required. Currently, low-cost RGB-D sensors are often used. These come with a closed source registration function. In order to have an efficient and freely available method for any sensors, we have developed a new method, called Triangle-Mesh-Rasterization-Projection (TMRP). To verify the performance of our method, we compare it with the closed-source projection function of the Azure Kinect Sensor (Microsoft). The qualitative comparison showed that both methods produce almost identical results. Minimal differences at the edges indicate that our TMRP interpolation is more accurate. With our method, a freely available open-source registration method is now available that can be applied to almost any multimodal 3D/2D image dataset and is not like the Microsoft SDK optimized for Microsoft products

    Stellar population analysis from broad-band colours

    Get PDF

    Event-based sensor fusion in human-machine teaming

    Get PDF
    Realizing intelligent production systems where machines and human workers can team up seamlessly demands a yet unreached level of situational awareness. The machines' leverage to reach such awareness is to amalgamate a wide variety of sensor modalities through multisensor data fusion. A particularly promising direction to establishing human-like collaborations can be seen in the use of neuro-inspired sensing and computing technologies due to their resemblance with human cognitive processing. This note discusses the concept of integrating neuromorphic sensing modalities into classical sensor fusion frameworks by exploiting event-based fusion and filtering methods that combine time-periodic process models with event-triggered sensor data. Event-based sensor fusion hence adopts the operating principles of event-based sensors and even exhibits the ability to extract information from absent data. Thereby, it can be an enabler to harness the full information potential of the intrinsic spiking nature of event-driven sensors
    corecore