
60th ILMENAU SCIENTIFIC COLLOQUIUM 
Technische Universität Ilmenau, 4 – 8 September 2023 

Article Identifier 
DOI:  10.22032/dbt.58927
URN: urn:nbn:de:gbv:ilm1-2023isc-070:0 URN: urn:nbn:de:gbv:ilm1-2023isc:1 

© 2023 by the authors. – Licensee Technische Universität Ilmenau, Deutschland. 

This is an Open Access article distributed under the terms of the Creative Commons Attribution 
ShareAlike-4.0 International License, (https://creativecommons.org/licenses/by-sa/4.0/). 

INVESTIGATIONS OF CLOSED SOURCE REGISTRATION METHOD OF DEPTH 
SENSOR TECHNOLOGIES FOR HUMAN-ROBOT COLLABORATION 

Christina Jungera and Gunther Notnia,b 

aTechnische Universität Ilmenau, Department of Mechanical Engineering, Group for Quality 
Assurance and Industrial Image Processing, Ilmenau, Germany 

bFraunhofer Institute for Applied Optics and Precision Engineering, Jena, Germany 

ABSTRACT 

Productive teaming is the new form of human-robot interaction. The multimodal 3D imaging 
has a key role in this to gain a more comprehensive understanding of production system as well 
as to enable trustful collaboration from the teams. For a complete scene capture, the registration 
of the image modalities is required. Currently, low-cost RGB-D sensors are often used. These 
come with a closed source registration function. In order to have an efficient and freely available 
method for any sensors, we have developed a new method, called Triangle-Mesh-Rasterization-
Projection (TMRP). To verify the performance of our method, we compare it with the closed-
source projection function of the Azure Kinect Sensor (Microsoft). The qualitative comparison 
showed that both methods produce almost identical results. Minimal differences at the edges 
indicate that our TMRP interpolation is more accurate. With our method, a freely available 
open-source registration method is now available that can be applied to almost any multimodal 
3D/2D image dataset and is not like the Microsoft SDK optimized for Microsoft products. 

Index Terms - human-robot interaction, collaboration, productive teaming, registration, 
projection, depth completion; Triangle-Mesh-Rasterization-Projection; Azure Kinect SDK; 
Microsoft 

1. INTRODUCTION AND RELATED WORK

1.1 Human-robot interaction 
Nowadays, in almost all industry sectors various industrial robots are represented. The choice 
of the robot depends on the field of application (s. Figure 9 in the appendix). Robots can be 
used as work support or as a platform for sensors for monitoring. In addition to robots with 
wheels or caterpillar drive (tile-laying robot [1] [2], pick-and-place robots), there are also robots 
with a movement capability that enables them to reach hard-to-reach places1. Among the latter 
is the Boston Dynamics Spot, which can be used as a platform for optical metrology to capture 
the environment in three dimensions, e.g. for forest monitoring or litter collection along the 
highway (s. Figure 9). 

There are currently four human-robot interaction (HRI) forms [3] (see Figure 1): (1) 
coexistence, (2) cooperation, (3) collaboration [4] and (4) productive teaming. Collaborative 
robots, in short cobots, focus on safety and user-friendliness so as not to injure humans. Another 
goal is the awareness2 that it is considered in the form of productive teamwork (Figure 1). Here, 
with a common understanding of robots and humans, a flexible, variant and non-automated 

1 Stairs or terrain insurmountable for wheels (forest or safety-critical production halls) 
2 observability, predictability and controllability 

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://nbn-resolving.org/urn:nbn:de:gbv:ilm1-2023isc:1
https://nbn-resolving.org/urn:nbn:de:gbv:ilm1-2023isc-070:0
https://doi.org/10.22032/dbt.58927


© 2023 by the authors. – Licensee Technische Universität Ilmenau, Deutschland. 2 

 
Figure 1: Four forms of human-robot interaction (source according to [5]). The newest form is productive 

teaming, which focuses on human-centered collaboration between people and machines. 

 
work process is to be executed efficiently. To ensure human safety and human-centered 
collaboration, it is important to select the appropriate sensors. For example, in a robot-human 
collaboration (HRC), safety must be ensured in the event of simultaneous grasping of un-
/known objects [4]. On the one hand, this is ensured via a lower robot speed and the 
(mobile/stationary) sensor technology. In most cases, human-robot collaboration uses 
multimodal 3D sensors to enable trustful cooperation. Multimodal 3D imaging has a key role, 
as the quality and processing speed of the image analysis depends on the output data of the 
sensor. 
 
1.2 Registration of a multimodal 3D system 
Multimodal 3D imaging is enormously important nowadays [6] and is present in various 
industries. E.g. for safe robot-human cooperation [4] or in scene analysis [7, 8, 9]; for interactive 
robot teaching [10]; for autonomous navigation [11]; for medical applications [12, 13]; and for 
quality control [14]. A newer area is the detection of optically uncooperative surfaces (in the 
visual wavelength range) [15, 16, 17, 18, 19]. An important step in multimodal image 
processing is the registration. The goal of registration is optimal data fusion of the different 
image modalities into a coherent coordinate system for a more comprehensive understanding 
of the assembly process. Various challenges can arise here [20]: non-commensurability, 
different resolutions, number of dimensions, noise, missing data, conflicting, contradicting or 
inconsistent data. We focus on one challenge, the different resolutions. The depth sensor is 
the most important sensor of all, since it determines the geometry. However, this sensor usually 
has a low resolution. Figure 2 shows the resolutions from an RGB-D sensor. Here the depth 
image has a resolution of 0.09 MPx and the RGB image has a resolution of 3.7 MPx. In order 
not to discard any information, all acquired data is transformed and projected to the maximum 
sensor resolution of the multimodal 3D system. In our example this would be the RGB camera. 
The low resolution point cloud is first transformed into the high-resolution target image 
coordinate system and then projected into the high-resolution 2D raster target image. 
Depending on the projection method, four challenges (A)-(D) can arise here. For more details 
see our publication [21]. 

(A) gap due to physical limitation of source sensor technology → not fully considered 
(B) false gap in raster (neighboring 3D coordinates X/Y are further than one pixel apart) 

[22] 
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Figure 2: Robot-based assistance in manufacturing and production factories with multimodal sensors. Key role: 
Registration based on Triangle-Mesh-Rasterization-Projection (TMRP) method and closed source Microsoft 

method as reference (ref.). Frame: 1624005922901327000 of ATTACH data set [23]. 

 
(C) false neighbor in raster (neighboring 3D coordinates X/Y are less than one pixel apart) 
→ fattening problem near depth discontinuities [22, 24, 25, 26] 

(D) superposition of foreground and background in the target image (ambiguities) [27] 
An overview of the different projection methods and their advantages and disadvantages are 
described in detail in our publication [21]. More complex projection methods have integrated 
up-sampling by interpolation. The accuracy of the up-sampling depends on the projection 
method used. Here a rough distinction is made between (i) conventional methods: [26, 27, 28, 
22, 29, 30]; (ii) polygon based method [27, 6, 21]; and (iii) deep learning based up-sampling: 
[31, 22, 32, 25, 33, 34]. Depth sensor manufacturers usually provide closed sourced Software 
Development Kits (SDK) or drivers with Depth-to-RGB registration functions. Since 
registration of data is the starting point for various image analyses3, we have developed our 
own projection method to be independent of sensor manufacturers. Our method is polygon 
based and is called Triangle-Mesh-Rasterization-Projection (TMRP) [21]. Our method is open 
source and freely available for a wide range of multimodal sensors. 
 
1.3 The main contributions of our paper 
To investigate the performance of our new Triangle-Mesh-Rasterization-Projection method, we 
compare it with the closed-source projection function from Microsoft (Azure Kinect Sensor 
SDK, v1.4.1) with respect to challenges (A)-(D). In addition, we show the transferability and 
long-term benefits of this method for robot-human interactions.  
 

2. POLYGON BASED PROJECTION METHOD 
 
Polygon based projection method is a research area with very little scientific literature [27]. 
Advantage of this method is the interpolation of all points, which is independent of the distance 
between the points of a triangle. With this method, the density is 𝑋𝑌𝑍 independent. The 
disadvantage is the higher computational effort compared to conventional methods. The best 
known representative is the Delaunay triangulation with nearest neighbor interpolation [6, 27]. 
Another representative is our Triangle-Mesh-Rasterization-Projection (TMRP) method [21]. 
Our interpolation is more accurate (s. details in [21]). 

 
3 e.g. object recognition; grip pose estimation [4]; action recognition [23] 
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3. METHODOLOGY 
 
3.1 Overview 
Our goal is to investigate the performance of our Triangle-Mesh-Rasterization-Projection 
(TMRP) method. For this, we compare it with the closed source projection function from 
Microsoft (Azure Kinect Sensor SDK, v1.4.1). Figure 3 shows our methodology using the 
Azure Kinect Sensor. Above is the image acquisition as well as the registration function based 
on the Azure-Kinect-Sensor Software Development Kit (SDK). Below is our open source 
registration. This consists of a coordinate transformation and our Triangle-Mesh-Rasterization-
Projection (TMRP) method [21]. Intrinsic and extrinsic calibration parameters are required for 
registration. 
 

 
Figure 3: Overview of the pipeline based on the Azure Kinect Sensor. Closed-source registration method based 

on Azure-Kinect-Sensor SDK (top) and an our open-source registration method based on our Triangle-Mesh-

Rasterization-Projection (TMRP) method [21] (bottom). 

 
 
3.2 Our registration method 
 
3.2.1 Coordinate transformation 
Before projection, the low resolution depth image (2D) / low resolution point cloud (3D) must 
be transformed into the coordinate system of the RGB camera. In addition, the 2D neighborhood 
(𝑟𝑥, 𝑟𝑦) of the low resolution depth image or point cloud must be determined in order to apply 
our TMRP method (section 2.2.2). Figure 4 shows the coordinate transformations of the depth 
sensor. 
 

 
Figure 4: Coordinate transformation 𝑻𝐶𝑜𝑙𝑜𝑟

𝑇𝑜𝐹 , which transforms the coordinate system ToF into the coordinate 

system Color. 
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Equation (1) describe the transformation of the low resolution point cloud (Depth Sensor 3D) 
into the Color Camera 3D coordinate system. The transformation is described by the rotation 
matrix 𝐑𝑅𝐺𝐵→𝑑𝑒𝑝𝑡ℎ  and the translation vector 𝐭𝑅𝐺𝐵→𝑑𝑒𝑝𝑡ℎ . 
 

(

 
 

𝑋transf-depth-3D
𝑌transf-depth-3D
𝑍transf-depth-3D

1
)

 
 
= [
𝐑𝑅𝐺𝐵→𝑑𝑒𝑝𝑡ℎ
−𝟏 −𝐑𝑅𝐺𝐵→𝑑𝑒𝑝𝑡ℎ

−𝟏 𝐭𝑅𝐺𝐵→𝑑𝑒𝑝𝑡ℎ
01×3 1 ] ⋅

(

 
 

𝑋𝑑𝑒𝑝𝑡ℎ3𝐷
𝑌𝑑𝑒𝑝𝑡ℎ3𝐷
𝑍𝑑𝑒𝑝𝑡ℎ3𝐷
1

)

 
 

 

 
 

(1) 

 
Lens distortion correction is performed using radial distortion coefficients 𝑘1 − 𝑘6 (Eq. (3)) 
and tangential distortion coefficients 𝑝1, 𝑝2 (Eq. (4)) [35]. Equation  
(6) describes the converted depth points into a 2D point cloud in the color camera 2D coordinate 
system. 
 

𝑋′ =
𝑋transf-depth-3D

𝑍transf-depth-3D
,   𝑌′ =

𝑌transf-depth-3D

𝑍transf-depth-3D
,   𝑟 = √𝑋′2 + 𝑌′2 

(2) 

 

𝛿𝑟𝑎𝑑 =
1 + 𝑘1 ⋅ 𝑟

2 + 𝑘2 ⋅ 𝑟
4 + 𝑘3 ⋅ 𝑟

6

1 + 𝑘4 ⋅ 𝑟2 + 𝑘5 ⋅ 𝑟4 + 𝑘6 ⋅ 𝑟6
 

(3) 

 

𝛿𝑡𝑎𝑛𝑥 = 2 ⋅ 𝑝1 ⋅ 𝑋
′ ⋅ 𝑌′ + 𝑝2 ⋅ (𝑟

2 + 2 ⋅ 𝑋′2) 

𝛿𝑡𝑎𝑛𝑦 = 𝑝1 ⋅ (𝑟
2 + 2 ⋅ 𝑌′2) + 2 ⋅ 𝑝2 ⋅ 𝑋′ ⋅ 𝑌′ 

 
(4) 

 

𝑋″ = 𝑋′ ⋅ 𝛿𝑟𝑎𝑑 + 𝛿𝑡𝑎𝑛𝑥,   𝑌″ = 𝑌′ ⋅ 𝛿𝑟𝑎𝑑 + 𝛿𝑡𝑎𝑛𝑦  (5) 
 

(

𝑋
𝑌
𝑍
) = [

𝑓x-RGB ⋅ 𝑋″ + 𝑐x-RGB
𝑓y-RGB ⋅ 𝑌″ + 𝑐y-RGB

𝑍

] 

 
(6) 

 
3.2.2 Triangle-Mesh-Rasterization-Projection 
Our Triangle-Mesh-Rasterization-Projection (TMRP) method enables the generation of dense 
2D raster images from multimodal 3D data 𝑃(𝑋, 𝑌, 𝑉)4 with different source resolutions. 
Instead of considering only spatial coordinates, our method uses a 5-dimensional representation 
by combining source 2D raster information (𝑟𝑥, 𝑟𝑦). The source 2D neighborhood information 
(𝑟𝑥, 𝑟𝑦) can be acquired simultaneously with almost all 3D measurement methods. This 
additional information is used for neighborhood determination resp. triangulation (see Figure 
5). Based on the determined 2D three- and four-neighborhoods, the triangular interpolation can 
be performed quickly. With this efficient polygon based up-sampling method, no false gaps and 
false neighbors are created in the target image. In addition, valid gaps in the original 3D survey 
are fully preserved. Valid gaps are imperfections that are present in the source image resp. 
source 3D point cloud due to the physical limitations of the source sensor technology. With a 

 
4 V...any modality 
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ToF sensor, valid gaps occur with optically uncooperative surfaces (transparency) or surfaces 
aligned parallel to the optical axis. Invalidation of values also occurs on the Azure Kinect Sen- 

 
Figure 5: Brief overview of how our Triangle Mesh Rasterization Projection (TMRP) method works. Input: 

transformed point cloud (𝑋, 𝑌, 𝑍, 𝑟𝑥, 𝑟𝑦) with source raster information (𝑟𝑥, 𝑟𝑦). Algorithm reference refers to 

the publication [21]. 

 
-sor when: (1) outside the active IR illumination mask; (2) saturated IR signal; (3) low IR signal; 
(4) filter outliers; and (5) multipath interference [36]. Due to the triangles, our method is also 
XYZ independent. Ambiguities are also taken into account by a filter (none/min/max), so that 
foreground and background are clearly separated. To fully understand the components of our 
TMRP, we wrote down the process and mathematics as pseudocode in the paper [21]. 
 

target-image(x,y) = 𝑇𝑀𝑅𝑃(𝑋, 𝑌, 𝑉, 𝑟𝑥, 𝑟𝑦,heighttarget ,widthtarget ,<filter>) (7) 

 
3.3 Azure Kinect SDK registration method 
The transformation function k4a_calibration_2d_to_2d() [37] transform a 2D pixel coordinate 
with an associated depth value of the source camera into a 2D pixel coordinate of the target 
camera. Here, a triangle mesh is transformed from the geometry of the depth camera to the 
geometry of the color camera. The triangle mesh avoids incorrect gaps in the transformed depth 
image. "A Z-buffer ensures that occlusions are handled correctly. GPU acceleration is enabled 
for this function by default." [38] 
 

4. SPECIFICATION OF UTILIZED DATA 
 
Table 1 shows the specifications of the utilized data. 
 
Table 1: Specifications of utilized data. Sensor: Azure Kinect (Microsoft). 

Experiment Source of data Source image resolution 
(ToF sensor) 

Target image resolution 
(RGB camera) 

#1 in general ATTACH data [23] 320 px × 288 px 
(0.09 MPx) 

2560 px × 1440 px 
(3.7 MPx) 

#2 test specimen own data 640 px × 576 px 
(0.4 MPx) 

4096 px × 3072 px 
(12.6 MPx) 

 
5. EXPERIMENTS 

 
5.1 Density and accuracy 
Figure 6 shows the registered depth map based on the registration function of the closed source 
SDK (section 3.3) as well as based on our TMRP method (section 3.2). When registering the 
depth map ourselves using the calibration data, we do not get a congruent registered depth map. 
This is because the SDK internally uses three additional constants that are unknown to us: (i) 
scaling factor, (ii) x-axis offset and (iii) y-axis offset. Due to the unknown constants, we can 
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only qualitatively evaluate the two registered depth maps. Figure 6 shows the qualitative 
comparison with regard to the challenges (A)-(D), s. section 1.2: 

• Ambiguities — challenge (D): Both methods separate foreground and background. 
• False gaps5 — challenge (B): Figure 6 shows that both methods use efficient up-

sampling, avoiding false gaps and producing 100 % dense areas. For comparison, a 
registered depth map based on the simple stand-of-the-technique projection method is 
also shown. 

 

 
Figure 6: Qualitative comparison of the registered depth images (of experiment #1) based on closed source 

Azure Kinect SDK, TMRP and simple projection method. (top) Output data of Azure Kinect: low resolution depth 

image, high resolution RGB image (undistorted) and registered depth image (undistorted). (bottom) Qualitative 

comparison on the basis of selected Region of Interest (ROI). 

 
5 False gaps only occur in a registration where low-resolution source data is transformed and projected into a 
high-resolution target data. 
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• Valid gaps6 not fully considered & false neighbor— challenge (A) & (C): Compared 
to the low-resolution depths, the registered depth map contains wider “shadows” resp. 
valid gaps at edges in the depth geometry such as the person's back (see Figure 6, ROIs). 
This is caused by the fact that objects are shifted by a different amount during the 
transformation depending on their distance from the camera. This can lead to a far away 
object being shifted more than a neighboring object nearby, creating a gap where no 
depth information is available. 

  Figure 6 (expt. #1) shows that the valid gaps are at different positions. In the depth map 
based on the Microsoft method, the shadow is located at the back of the person (sagittal 
plane). In the depth map based on our TMRP method, it is on the front side of the person. 
This difference may be caused by the unknown constant (x-offset) (see Figure 6, 
(bottom-right)). With an x-axis offset, the "shadow" shifts to the right side, as in the 
Microsoft-based depth image. 

  Figure 8 (expt. #2) shows differences in valid gaps / false neighbors. Our method 
considers valid gaps (see ROI, gaps size of 1 px). However, we cannot make a statement 
about the Microsoft method because we do not know whether a filter is applied 
afterwards to close small gaps. 

 
Comparison of both interpolation methods: 
Both projection methods are polygon based. To find out whether the same interpolation method 
is used, we look at the edges (Figure 7). Due to the three unknown constants, this consideration 
is also only possible qualitatively. The edges in the entire registered depth image (Microsoft) 
are exclusively smooth. The edges in the registered depth image (TMRP) are smooth and have  
 

 
Figure 7: Qualitative examination of the edges to draw conclusions about the interpolation method (images of 

experiment #1). 

 
6 Invalidation of values occurs on the Azure Kinect Sensor when: (1) outside the active IR illumination mask; (2) 
saturated IR signal; (3) low IR signal; (4) filter outliers; and (5) multipath interference [36]. 
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Figure 8: Qualitative comparison of the images from experiment #2. Test specimen: (top) white matt plane with 

cutouts (𝑟1/2/3 = 3/4/5 𝑚𝑚); make with a laser-cutter. (bottom) RGB coloured staircase; made with an FDM 

printer (w/ painting). In the ROIs, the differences in terms of maintaining valid gaps/false neighbor become visible. 

 
 
either no or adjacent small areas (cf. Region-of-Interests in Figure 7). This indicates that either 
different interpolation methods are used or that Microsoft performs efficient edge-preserving 
smoothing afterwards. In the former case, our interpolation method would be more accurate (s. 
[21]). 
 
 
 
5.2 Computation time and memory usage 
Table 2 shows a quantitative comparison of the computation time and memory consumption of 
our TMRP method (sequential) at different target image resolutions. With approximately the  
 
Table 2: Quantitative comparison of computation time and memory usage of our TMRP algorithm (sequential). 

Avg. computation time and max. resident set size (RSS) on processing unit (i9): Intel Core i9-7960X CPU @ 

2.80 GHz and (i7): Intel Core i7-6700X CPU @ 4.00 GHz. Input data: transformed points: Figure 6 (#1) and 

Figure 8 (#2, top). 

expt. image resolution 
(MPx) 

computation time 
 

max. RSS density (in %) 

 source target uint (i9) unit (i7)  visual dense accurate 
#1 0.09 3.7 0.5 s 0.4 s 244.1 MiB 39.6* 100 
#2 0.4 12.6 1.9 s 1.7 s 804.9 MiB 40.4* 100 

* Why not 100 %? Valid gaps (A) are not taken into account here. The value is also dependent on the three unknown 
constants. 
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same visual density of the target image (experiment #1 and #2), quadrupling the number of 
pixels of the source and target images increases the computation time of the algorithm by a 
factor of four. The TMRP algorithm thus has a linear time complexity in relation to the image 
resolution. 
 

6. CONCLUSION, LIMITATION, TRANSFERABILITY AND FUTURE WORK 
 
6.1 Conclusion 
To ensure safe and trustful cooperation in robot-human interactions (e.g. collaboration or 
teaming), multimodal 3D imaging is required. The key role of multimodal 3D technology is to 
gain a more comprehensive understanding of the production as well as to enable a trustful 
cooperation of the teams. For image analysis, the data must be registered, i.e. transferred into a 
coherent coordinate system. The registration consists of two steps: the coordinate 
transformation (s. Figure 4) of the source data into the target coordinate system and the 
projection of the point cloud into the target image. One challenge here is the different 
resolutions of the sensors. Thermal imaging sensors, for example, have a low resolution because 
the special semiconductor chips required are very expensive. To solve this challenge, we have 
developed our own polygon-based projection method, named Triangle-Mesh-Rasterization-
Projection (TMRP). Our method is also independent of sensor and modality. To verify the 
performance of our TMRP method, we compare our registered depth maps with those generated 
by Microsoft’s closed source projection function (Azure Kinect SDK). The results were 
examined in terms of (i) accounting for valid gaps, (ii) avoiding false gaps, (iii) avoiding false 
neighbors, (iv) separating foreground and background, and (v) accounting for XYZ dependence 
of density. 

Due to unknown constants (scaling, x-offset and y-offset) in the coordinate 
transformation, our resulting planar point cloud differs from the Azure Kinect Sensor (AKS) 
based one. Therefore, our methods can only be compared qualitatively. Table 3 shows a 
comparison of the results. Research has shown that in qualitative comparison with Microsoft’s 
Azure Kinect Sensor SDK, our algorithm achieves almost identical results in terms of (ii) 
avoiding false gaps, (iv) separating foreground and background and (v) accounting for XYZ 
dependence of density (s. Figure 6). Due to the three unknown constants (s. Figure 7), we cannot 
say with 100 % certainty whether valid gaps are fully considered (i) and false neighbors are 
generated (iii). Looking at the edges, it is noticeable that either (I) both methods use a different 
interpolation or that (II) Microsoft performs additional edge preserving smoothing and filtering 
afterwards. In the first case (I), our method is even more accurate. Since our interpolation 
method (s. Figure 5) refers to the 2D neighborhoods and includes one (for neighborhoods of 3) 
or four (for neighborhoods of 4) interpolation weights depending on the neighborhood. 
 
 

Summary: The qualitative comparison showed that both methods produce almost 
identical results. Minimal differences at the edges indicate that both projection methods either 
use slightly different interpolation methods or Microsoft performs efficient edge-preserving 
smoothing and filtering afterwards. With the former, our TMRP interpolation would be more 
accurate. With the TMRP method, there is now a freely-available open source7 projection 
method that can be applied to almost any multimodal 3D / 2D image dataset and not like the 
Microsoft SDK optimized for Microsoft products. 
 

 
7 https://github.com/QBV-tu-ilmenau/Triangle-Mesh-Rasterization-Projection 

https://github.com/QBV-tu-ilmenau/Triangle-Mesh-Rasterization-Projection
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Table 3: Qualitative comparison of Azure-Kinect Sensor (AKS) projection method and our TMRP method. (left-

to-right) State-of-the-art projection (SOTA proj.), closed source AKS SDK (v1.4.1) projection function and our 

TMRP method. 

Properties SOTA proj. AKS SDK 
(Microsoft) 

TMRP 
(our) 

Creates false neighbors in raster 
(A) & (C) 

low (low) never 

Creates false gaps in raster, (B) often never never 
Resolution of ambiguities, (D) no yes yes 
Density is independent of 𝑿𝒀𝒁 no yes† yes† 
Required input w/o 𝑟𝑥, 𝑟𝑦 w/ 𝑟𝑥, 𝑟𝑦 w/ 𝑟𝑥, 𝑟𝑦 
Computing effort low middle-high high‡ 
Frame Rates - 30/15 fps§ 

Azure Kinect Sensor SoC 
approx. 2/0.5 fps 
Intel Core i7/i9 

Code available open source, free closed source open source, free [21] 
For any sensor & any modality yes no yes [21] 
†  because this method interpolates all points regardless of the distance between the points of a triangle 
‡  however highly parallelizable 
§  incl. image capture and other things 

 
6.2 Limitation 
Currently, our TMRP method [21] cannot be used in real-time applications because it requires 
a relatively high computing time due to its serial implementation. However, this limitation can 
be overcome by parallelization, as our TMRP algorithm is highly parallelizable. 
 
6.3 Transferability 
Our efficient TMRP method is applicable to any 3D/2D sensors and modalities [21]. We believe 
that this method will also enrich the field of human-robot interaction in the long term. Figure 9 
shows possible robot applications. 
 

• Robot perception / robot manipulation ability in general 
• To ensure trustful human-robot collaboration and teaming, additional thermal 

cameras are used [4, 10]. Thermal cameras usually have low resolution because the 
special semiconductor chips required are very expensive. 

• In the forest sector: monitoring; litter collection or wood mass determination; forest 
renewal 

 
6.4 Future work 

• In the future, we want to parallelize our current serial algorithm. Parallelizing the 
algorithm will significantly reduce the processing speed so that our TMRP method can 
be integrated into various real-time applications in the future. 

• In cooperation with the Fraunhofer Institute for Applied Optics and Precision 
Engineering we are currently developing a new measurement principle TranSpec3D to 
generate a stereo data set for transparent and specular surfaces in the VIS range without 
object painting. Our TMRP method is used in this measurement principle. 
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APPENDIX A. ROBOT APPLICATIONS 
Figure 9 shows robotic applications of our department. 
 

 
Figure 9: Robotic applications at our department. (top-left) Current [39] and future work in the forest sector; 

Boston Dynamics spot for forest monitoring or litter collection along the highway (image source: Cooperation 

with FH Erfurt (Mr. P. Voigt) and Holz21 Regio https://www.holz-21-regio.de/). (top-right) human-robot 

collaboration in assembly process (image source: project partner in E4SM https://www.e4sm-projekt.de/: Mr. B. 

Stephan, Department of Neuroinformatics and Cognitive Robotics, TU Ilmenau) and safe Robotic in HRC [10, 4] 

(bottom-left) Robotic in the craft sector: Tile-laying robot [1, 2]. (bottom-right) Autonomous robot-based 

calibration of multi-view stereo systems [40]. 
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