14 research outputs found
PD-L1/PD-1 Pattern of Expression Within the Bone Marrow Immune Microenvironment in Smoldering Myeloma and Active Multiple Myeloma Patients
Background: The PD-1/PD-L1 axis has recently emerged as an immune checkpoint that controls antitumor immune responses also in hematological malignancies. However, the use of anti-PD-L1/PD-1 antibodies in multiple myeloma (MM) patients still remains debated, at least in part because of discordant literature data on PD-L1/PD-1 expression by MM cells and bone marrow (BM) microenvironment cells. The unmet need to identify patients which could benefit from this therapeutic approach prompts us to evaluate the BM expression profile of PD-L1/PD-1 axis across the different stages of the monoclonal gammopathies. Methods: The PD-L1/PD-1 axis was evaluated by flow cytometry in the BM samples of a total cohort of 141 patients with monoclonal gammopathies including 24 patients with Monoclonal Gammopathy of Undetermined Significance (MGUS), 38 patients with smoldering MM (SMM), and 79 patients with active MM, including either newly diagnosed or relapsed-refractory patients. Then, data were correlated with the main immunological and clinical features of the patients. Results: First, we did not find any significant difference between MM and SMM patients in terms of PD-L1/PD-1 expression, on both BM myeloid (CD14+) and lymphoid subsets. On the other hand, PD-L1 expression by CD138+ MM cells was higher in both SMM and MM as compared to MGUS patients. Second, the analysis on the total cohort of MM and SMM patients revealed that PD-L1 is expressed at higher level in CD14+CD16+ non-classical monocytes compared with classical CD14+CD16− cells, independently from the stage of disease. Moreover, PD-L1 expression on CD14+ cells was inversely correlated with BM serum levels of the anti-tumoral cytokine, IL-27. Interestingly, relapsed MM patients showed an inverted CD4+/CD8+ ratio along with high levels of pro-tumoral IL-6 and a positive correlation between Í14+PD-L1+ and Í8+PD-1+ cells as compared to both SMM and newly diagnosed MM patients suggesting a highly compromised immune-compartment with low amount of CD4+ effector cells. Conclusions: Our data indicate that SMM and active MM patients share a similar PD-L1/PD-1 BM immune profile, suggesting that SMM patients could be an interesting target for PD-L1/PD-1 inhibition therapy, in light of their less compromised and more responsive immune-compartment
Application of next-generation sequencing for the genomic characterization of patients with smoldering myeloma
Genomic analysis could contribute to a better understanding of the biological determinants of the evolution of multiple myeloma (MM) precursor disease and an improved definition of high-risk patients. To assess the feasibility and value of next-generation sequencing approaches in an asymptomatic setting, we performed a targeted gene mutation analysis and a genome-wide assessment of copy number alterations (CNAs) by ultra-low-pass whole genome sequencing (ULP-WGS) in six patients with monoclonal gammopathy of undetermined significance and 25 patients with smoldering MM (SMM). Our comprehensive genomic characterization highlighted heterogeneous but substantial values of the tumor fraction, especially in SMM; a rather high degree of genomic complexity, in terms of both mutations and CNAs, and inter-patient variability; a higher incidence of gene mutations and CNAs in SMM, confirming ongoing evolution; intraclonal heterogeneity; and instances of convergent evolution. ULP-WGS of these patients proved effective in revealing the marked genome-wide level of their CNAs, most of which are not routinely investigated. Finally, the analysis of our small SMM cohort suggested that chr(8p) deletions, the DNA tumor fraction, and the number of alterations may have clinical relevance in the progression to overt MM. Although validation in larger series is mandatory, these findings highlight the promising impact of genomic approaches in the clinical management of SMM
Mechanisms of Action of the New Antibodies in Use in Multiple Myeloma
Monoclonal antibodies (mAbs) directed against antigen-specific of multiple myeloma (MM) cells have Fc-dependent immune effector mechanisms, such as complement-dependent cytotoxicity (CDC), antibody-dependent cellular cytotoxicity (ADCC), and antibody-dependent cellular phagocytosis (ADCP), but the choice of the antigen is crucial for the development of effective immuno-therapy in MM. Recently new immunotherapeutic options in MM patients have been developed against different myeloma-related antigens as drug conjugate-antibody, bispecific T-cell engagers (BiTEs) and chimeric antigen receptor (CAR)-T cells. In this review, we will highlight the mechanism of action of immuno-therapy currently available in clinical practice to target CD38, SLAMF7, and BCMA, focusing on the biological role of the targets and on mechanisms of actions of the different immunotherapeutic approaches underlying their advantages and disadvantages with critical review of the literature data
Concomitant primary hyperparathyroidism in patients with multiple myeloma: A possible link?
Hypercalcemia is a significant feature of patients with active multiple myeloma (MM) with extensive bone disease. Among the causes of non-neoplastic hypercalcemia, primary hyperparathyroidism (PHPT) is one of the most common, leading to osteoporosis and bone fractures. Interestingly, some preclinical data indicate that high secretion of parathyroid hormone (PTH) may have a negative impact on bone disease and MM progression. However, concomitant diagnosis of MM and PHPT has rarely been described. Here, we present 4 cases of patients with active MM and hypercalcemia with high or inappropriately normal PTH levels. Interestingly, CD138 cells from these 4 MM patients lack PTH receptor 1 and PTH-related peptide expressions, indicating that PTH could have a paracrine rather than a direct pro-tumoral effect. Moreover, these cases suggest that the concomitant diagnosis of MM and PHTP may not be so rare and should be considered for the clinical management of MM patients with hypercalcemia
Phase II Trial of Maintenance Treatment With IL2 and Zoledronate in Multiple Myeloma After Bone Marrow Transplantation: Biological and Clinical Results
Background: Maintenance treatment after autologous bone marrow transplantation in multiple myeloma improves the outcome of patients. We designed a phase II clinical trial to evaluate the treatment with IL2 and zoledronate after autologous bone marrow transplantation in myeloma patients. Methods: Patients with a histologically proven diagnosis of multiple myeloma become eligible if achieved a very good partial remission in bone marrow samples after 3 months from autologous bone marrow transplantation. IL2 was administered from day 1 to 7. In the first cycle, the daily dose was 2 × 106 IU, whereas, in subsequent ones the IL2 dose was progressively escalated, with +25% increases at each cycle, until evidence of toxicity or up to 8 × 106 IU. Four mg of zoledronic acid were infused on day 2. Flow cytometry analysis of γδ-lymphocytes was performed at days 1 and 8 of treatment cycles. Results: Forty-four patients have been enrolled between 2013 and 2016. The median time to progression was 22.5 months (95% CI 9.7–35.2). A complete remission with a negative immunofixation was obtained in 18% of patients and correlated with a significantly longer time to progression (p = 0.015). Treatment was well tolerated without G3 or 4 toxicities. After a week of treatment with IL2 and zoledronate, γδ lymphocytes, Vγ9δ2, CD57+, effector, late effector, and memory γδ increased but in subsequent cycles, there was a progressive reduction of this expansion. Conclusions: The maintenance treatment with IL2 and Zoledronate has a modest activity in myeloma patients after autologous bone marrow transplantation. EudraCT Number: 2013-001188-22
A Rare Case of Systemic AL Amyloidosis with Muscle Involvement: A Misleading Diagnosis
Muscle involvement in AL amyloidosis is a rare condition, and the diagnosis of amyloid myopathy is often delayed and underdiagnosed. Amyloid myopathy may be the initial manifestation and may precede the diagnosis of systemic AL amyloidosis. Here, we report the case of a 73-year-old man who was referred to our center for a monoclonal gammopathy of undetermined significance (MGUS) diagnosed since 1999. He reported a progressive weakness of proximal muscles of the legs with onset six months previously. Muscle biopsy showed mild histopathology featuring alterations of nonspecific type with a mixed myopathic and neurogenic involvement, and the diagnostic turning point was the demonstration of characteristic green birefringence under cross-polarized light following Congo red staining of perimysial vessels. Transmission electron microscopy (TEM) con firmed amyloid fibrils around perimysial vessels associated with collagen fibrils. A stepwise approach to diagnosis and staging of this disorder is critical and involves confirmation of amyloid deposition, identification of the fibril type, assessment of underlying amyloidogenic disorder, and evaluation of the extent and severity of amyloidotic organ involvement