357 research outputs found
The First 1000 Days of Life: How Changes in the Microbiota Can Influence Food Allergy Onset in Children
Background: Allergic disease, including food allergies (FA)s, has been identified as a major global disease. The first 1000 days of life can be a “window of opportunity” or a “window of susceptibility”, during which several factors can predispose children to FA development. Changes in the composition of the gut microbiota from pregnancy to infancy may play a pivotal role in this regard: some bacterial genera, such as Lactobacillus and Bifidobacterium, seem to be protective against FA development. On the contrary, Clostridium and Staphylococcus appear to be unprotective. Methods: We conducted research on the most recent literature (2013–2023) using the PubMed and Scopus databases. We included original papers, clinical trials, meta-analyses, and reviews in English. Case reports, series, and letters were excluded. Results: During pregnancy, the maternal diet can play a fundamental role in influencing the gut microbiota composition of newborns. After birth, human milk can promote the development of protective microbial species via human milk oligosaccharides (HMOs), which play a prebiotic role. Moreover, complementary feeding can modify the gut microbiota’s composition. Conclusions: The first two years of life are a critical period, during which several factors can increase the risk of FA development in genetically predisposed children
Essential oil of Cyphostemma juttae (Vitaceae): chemical composition and antitumor mechanism in triple negative breast cancer cells
The genus Cyphostemma (Planch.) Alston (Vitaceae) includes about 150 species distrib- uted in eastern and southern Africa and Madagascar. Some species are used in traditional medicine and their biological activities, including antiproliferative effects against cancer cell lines, have been demonstrated. To date no investigations on Cyphostemma essential oils have been carried out. Essential oils, which play important roles in plant defenses have been demonstrated to be active in the treatment of several human diseases and to enhance bioavability of other drugs. The aim of this paper was to identify the chemical composition of the essential oil of the leaves of Cyphostemma juttae (Dinter & Gilg) Desc. and to verify some biological activities on two triple negative breast cancer cell lines (MDA-MB-231, SUM 149), characterized by the over-expression of the transcription factor NF-ÎşB. In the essential oil, obtained by hydrodistillation and analysed by gas chromatography-mass spectrometry, 39 compounds were detected and with phytol (30%) dominating the chemical composition. C. juttae essential oil reduced cell growth and showed a pro-oxidant activity in both cell lines. Moreover, C. juttae essential oil caused a substantial decrease of NF-ÎşB activation and consequently a significant reduction of some NF-ÎşB target genes. The present study shows for the first time the cytotoxic properties of C. juttae essential oil and highlight its avail- ability to interfere with NF-ÎşB pathway, suggesting a potential therapeutic use in triple nega- tive breast cancers (TNBCs) of this essential oil
Microcephaly and macrocephaly. A study on anthropometric and clinical data from 308 subjects
Head circumference is the auxological parameter that most correlates with developmental anomalies in childhood. Head circumference (HC) two standard deviations (SD) below or above the mean defines microcephaly and macrocephaly, respectively. The aim of this retrospective study was to explore anthropometric parameters and clinical characteristics among subjects with abnormalities in HC who had been referred for developmental assessment. One hundred and sixty four subjects with microcephaly and 144 subjects with macrocephaly were enrolled from birth to 18 months of age. Head circumference at birth and the association with variables related to maternal health status, gestational age, growth pattern, brain imaging and clinical characteristics were analyzed. In some cases, an etiological diagnosis was made. In the two considered conditions, we found different anthropometric and clinical associations, some of which were statistically significant, with implications for ongoing neurodevelopmental surveillance
Epigenetic changes and nuclear factor-\u3baB activation, but not microRNA-224, downregulate Raf-1 kinase inhibitor protein in triple\u2011negative breast cancer SUM 159 cells
Raf-1 kinase inhibitor protein (RKIP) is a tumor suppressor and metastasis inhibitor, which enhances drug\u2011induced apoptosis of cancer cells. Downregulation of RKIP may be significant in the biology of highly aggressive and drug\u2011resistant tumors, for example triple\u2011negative breast cancers (TNBCs). Potential causes for the low levels of RKIP expressed by SUM 159 TNBC cells were investigated in the present study. Bisulphite modification, methylation specific\u2011polymerase chain reaction (PCR) and a TransAM NF-\u3baB assay were performed and the results suggested that various mechanisms, including methylation of the gene promoter, histone deacetylation and nuclear factor\u2011\u3baB (NF\u2011\u3baB) activation, but not targeting by microRNA\u2011224 (miR/miRNA\u2011224), as determined by transfection of pre\u2011miR\u2011224 miRNA precursor or anti\u2011miR\u2011224 miRNA inhibitor, may downregulate RKIP in these cells. Furthermore, reverse transcription\u2011quantitative PCR, western blotting,3\u2011(4,5\u2011dimethylthiazol\u20112\u2011yl)\u20115\u2011(3\u2011carboxymethoxyphenyl)\u20112\u2011(4\u2011sulphophenyl)\u20112H\u2011tetrazolium cell growth assay and flow cytometry revealed that in SUM 159 cells, the demethylating agent 5\u2011aza\u20112'\u2011deoxycytidine (5\u2011AZA), the histone deacetylase inhibitor trichostatin A (TSA) and the NF\u2011\u3baB inhibitor dehydroxymethylepoxyquinomicin (DHMEQ) enhanced RKIP expression and resulted in significant cell growth inhibition and induction of apoptosis. 5\u2011AZA and TSA mainly produced additive antitumor effects, while the combination of DHMEQ and TSA exhibited significant synergy in cell growth inhibition and induction of apoptosis assays. Increasing evidence that aberrant activation of NF\u2011\u3baB signaling is a frequent characteristic of TNBC highlights the fact that this transcription factor may be a useful target for treatment of such tumors. In addition to DHMEQ, proteasome inhibitors may also represent valuable therapeutic resources in this context. Notably, proteasome inhibitors, in addition to the inhibition of NF\u2011\u3baB activation, may also restore RKIP levels by inhibiting proteasome degradation of the ubiquitinated protein. The current results contribute to the understanding of the molecular mechanisms of RKIP downregulation in TNBC and suggest possible novel therapeutic approaches for the treatment of these types of cancer
Cetaceans of Venezuela: Their distribution and conservation status.
Sighting, stranding, and capture records of whales and dolphins for Venezuela were assembled and analyzed to document the Venezuelan cetacean fauna and its distribution in the eastern Caribbean. An attempt was made to confirm species identification for each of the records, yielding 443 that encompass 21 species of cetaceans now confirmed to occur in Venezuelan marine, estuarine, and freshwater habitats. For each species, we report its global and local distribution, conservation status and threats, and the common names used, along with our proposal for a Spanish common name. Bryde’s whale (Balaenoptera edeni) is the most commonly reported mysticete. The long-beaked common dolphin (Delphinus capensis) is the most frequent of the odontocetes in marine waters. The boto or tonina (Inia geoffrensis) was found to be ubiquitous in the Orinoco watershed. The distribution of marine records is consistent with the pattern of productivity of Venezuelan marine waters, i.e., a concentration at 63°07′W through 65°26′W with records declining to the east and to the west. An examination of the records for all cetaceans in the Caribbean leads us to conclude that seven additional species may be present in Venezuelan waters. (PDF file contains 61 pages.
Current Insights on Early Life Nutrition and Prevention of Allergy
The incidence of allergic diseases in childhood appears to have significantly increased over the last decades. Since environmental factors, including diet, have been thought to play a significant role in the development of these diseases, there is great interest in identifying prevention strategies related to early nutritional interventions. Breastfeeding is critical for the immune development of newborns and infants through immune-modulating properties and it impacts the establishment of a healthy gut microbiota. However, the evidence for a protective role of breastfeeding against the development of food allergy in childhood is controversial, and there is little evidence to support the benefits of an antigen avoidance diet during lactation. Although it is not possible to draw a definitive conclusion about the protective role of breast milk against allergic diseases, exclusive breastfeeding is still recommended throughout the first 6 months of life due to associated health benefits. Furthermore, recommendations regarding complementary feeding in infancy have been significantly modified over the last few decades. Several studies have shown that delayed exposure to allergenic foods does not have a role in allergy prevention and recent guidelines recommend against delaying the introduction of complementary foods after 6 months of age, both in high- and low-risk infants. However, trials investigating this dietary approach have reported equivocal results so far. This review summarizes the available high-quality evidence regarding the efficacy of the principal dietary interventions proposed in early life to prevent allergic diseases in children
Preclinical models in oncological pharmacology: limits and advantages
A wide range of experimental tumor models, each with distinct advantages and disadvantages, is nowadays available. Due to the inherent differences in their complexity and functionality, the choice of the model is usually dependent on the application. Thus, to advance specific knowledge, one has to choose and use appropriate models, which complexity is largely dependent on the hypotheses to test, that is on the objectives. Whatever the model chosen, the complexity of cancer is such that none of them will be able to fully represent it. In vitro tumor models have provided important tools for cancer research and still serve as low-cost screening platforms for drugs. The improved understanding of cancer as "organ system" has pushed for increased accuracy and physiological relevance of in vitro tumor models that have in parallel increased in complexity, diversifying their output parameters as they progressed in view to recapitulate the most critical aspects such as the dimensionality of cell cultures (2D versus 3D), the mechanical stimuli, the multicellular interactions, the immune interactions and the soluble signaling. Animal models represent the in vivo counterpart to cell lines and are commonly used for studies during the preclinical investigation of cancer therapy to determine the efficacy and safety of novel drugs. They are super to in vitro models in terms of physiological relevance offering imitation of parental tumors and a heterogeneous microenvironment as part of an interacting complex biochemical system. In the present review we describe advantages and limits of major preclinical models used in Oncological Pharmacology
Surveillance of Multidrug-Resistant Pathogens in Neonatal Intensive Care Units of Palermo, Italy, during SARS-CoV-2 Pandemic
Background: Antimicrobial resistance (AMR) is a topic of concern, especially in high-level care departments like neonatal intensive care units (NICUs). The systematic use of an “active” epidemiological surveillance system allows us to observe and analyze any changes in microbial distribution, limiting the risk of healthcare-associated infection (HAI) development. Methods: We have conducted a longitudinal observational study in the five NICUs of Palermo, comparing the “pre-pandemic period” (March 2014–February 2020) with the “pandemic” one (March 2020–February 2022). The primary aim of the study was to evaluate the cumulative prevalence of carriage from multi-drug resistant (MDR) bacteria in the cumulative NICUs (NICU C). Results: During the “pre-pandemic period”, 9407 swabs were collected (4707 rectal, 4700 nasal); on the contrary, during the “pandemic period”, a total of 2687 swabs were collected (1345 rectal, 1342 nasal). A statistically significant decrease in MDR-Gram-negative bacteria (GNB) carriage prevalence was detected during the pandemic. At the same time, there was a general worsening of the carriage of carbapenemase-forming MDR-GNB (CARBA-R+) and methicillin-resistant Staphylococcus aureus (MRSA) during the pandemic period. A significant reduction in methicillin-susceptible Staphylococcus aureus (MSSA) carriage was detected too. Conclusions: The surveillance of MDRO carriage in NICUs is fundamental for limiting the social and economic burden of HAIs
Pharmacogenetic considerations for optimizing tacrolimus dosing in liver and kidney transplant patients
The introduction of tacrolimus in clinical practice has improved patient survival after organ transplant. However, despite the long use of tacrolimus in clinical practice, the best way to use this agent is still a matter of intense debate. The start of the genomic era has generated new research areas, such as pharmacogenetics, which studies the variability of drug response in relation to the genetic factors involved in the processes responsible for the pharmacokinetics and/or the action mechanism of a drug in the body. This variability seems to be correlated with the presence of genetic polymorphisms. Genotyping is an attractive option especially for the initiation of the dosing of tacrolimus; also, unlike phenotypic tests, the genotype is a stable characteristic that needs to be determined only once for any given gene. However, prospective clinical studies must show that genotype determination before transplantation allows for better use of a given drug and improves the safety and clinical efficacy of that medication. At present, research has been able to reliably show that the CYP3A5 genotype, but not the CYP3A4 or ABCB1 ones, can modify the pharmacokinetics of tacrolimus. However, it has not been possible to incontrovertibly show that the corresponding changes in the pharmacokinetic profile are linked with different patient outcomes regarding tacrolimus efficacy and toxicity. For these reasons, pharmacogenetics and individualized medicine remain a fascinating area for further study and may ultimately become the face of future medical practice and drug dosing
- …