770 research outputs found

    ITGB2 mutation combined with deleted ring 21 chromosome in a child with leukocyte adhesion deficiency

    Get PDF
    Leukocyte adhesion deficiency type 1(LAD-1) is a rare autosomal recessive primary immunodeficiency caused by defects in the ITGB2 gene located on chromosome 21q22. Clinically, LAD-1 patients are characterized by recurrent infections, slow wound healing and dystrophic scars after skin injuries, associated with persistent neutrophilia. The severity of symptoms is related to the level of CD11/CD18 expression on patients’ leucocytes and those with less than 1% expression treated with hematopoietic stem cell transplant (HSCT). We present a child affected by LAD-1 who received HSCT from a matched unrelated donor. Molecular analysis revealed apparent homozygosis for a point mutation in the ITGB2 gene, only the mother however was carrier of the mutation. Cytogenetic and FISH analysis showed the presence of a de-novo ring chromosome 21. Whole Genome Analysis with the Affymetrix GeneChip Human Mapping 250K NspI array confirmed in the child the presence of a de novo deletion of the chromosomal region 21q22.3-qter, where the ITGB2 gene maps. While HSCT resulted in successful engraftment and correction of the immunodeficiency, all the phenotypic features of ring (21) syndrome with a deletion of a 4.6Mb (including 69 genes) clearly remained unchange

    A mutation in caspase-9 decreases the expression of BAFFR and ICOS in patients with immunodeficiency and lymphoproliferation

    Get PDF
    Lymphocyte apoptosis is mainly induced by either death receptor-dependent activation of caspase-8 or mitochondria-dependent activation of caspase-9. Mutations in caspase-8 lead to autoimmunity/lymphoproliferation and immunodeficiency. This work describes a heterozygous H237P mutation in caspase-9 that can lead to similar disorders. H237P mutation was detected in two patients: Pt1 with autoimmunity/lymphoproliferation, severe hypogammaglobulinemia and Pt2 with mild hypogammaglobulinemia and Burkitt lymphoma. Their lymphocytes displayed defective caspase-9 activity and decreased apoptotic and activation responses. Transfection experiments showed that mutant caspase-9 display defective enzyme and proapoptotic activities and a dominant-negative effect on wild-type caspase-9. Ex vivo analysis of the patients' lymphocytes and in vitro transfection experiments showed that the expression of mutant caspase-9 correlated with a downregulation of BAFFR (B-cell-activating factor belonging to the TNF family (BAFF) receptor) in B cells and ICOS (inducible T-cell costimulator) in T cells. Both patients carried a second inherited heterozygous mutation missing in the relatives carrying H237P: Pt1 in the transmembrane activator and CAML interactor (TACI) gene (S144X) and Pt2 in the perforin (PRF1) gene (N252S). Both mutations have been previously associated with immunodeficiencies in homozygosis or compound heterozygosis. Taken together, these data suggest that caspase-9 mutations may predispose to immunodeficiency by cooperating with other genetic factors, possibly by downregulating the expression of BAFFR and ICO

    Modélisation du transport de plasmides d'ADN du milieu extracellulaire au noyau par électroporation.

    Get PDF
    We propose a mathematical model for the DNA plasmids transport from the extracellular matrix up to the cell nucleus. The model couples two phenomena: the electroporation process, describing the cell membrane permeabilization to plasmids and the intracellular transport enhanced by the presence of microtubules. Numerical simulations of cells with arbitrary geometry and a network of microtubules show numerically the importance of the microtubules and the electroporation on the effectiveness of the DNA transfection, as observed by previous biological data.Le but de ce rapport est de présenter un modèle mathématique pour le transport de plasmides d'ADN, du milieu extracellulaire jusqu'au noyau, par application d'un champ électrique électroporant. Le modèle couple deux phénomènes : le processus électrique d'électroperméabilisation de la membrane cellulaire, ainsi que le transport électrophorétique de l'ADN dans le milieu extracellulaire d'une part, et le processus de transport actif de l'ADN le long des microtubules d'autre part. Les simulations numériques démontrent l'importance du transport actif le long des microtubules ainsi que l'avantage de l'électroporation pour la transfection de gènes, ce qui est corroboré par de récentes données expérimentales

    Defective Th1 Cytokine Gene Transcription in CD4+ and CD8+ T Cells from Wiskott-Aldrich Syndrome Patients

    Get PDF
    Abstract Wiskott-Aldrich syndrome (WAS) protein (WASP) plays a key role in TCR-mediated activation and immunological synapse formation. However, the effects of WASP deficiency on effector functions of human CD4+ and CD8+ T cells remain to be determined. In this study, we report that TCR/CD28-driven proliferation and secretion of IL-2, IFN-γ, and TNF-α are strongly reduced in CD8+ T cells from WAS patients, compared with healthy donor CD8+ T cells. Furthermore, WAS CD4+ T cells secrete low levels of IL-2 and fail to produce IFN-γ and TNF-α, while the production of IL-4, IL-5, and IL-10 is only minimally affected. Defective IL-2 and IFN-γ production persists after culture of naive WAS CD4+ T cells in Th1-polarizing conditions. The defect in Th1 cytokine production by WAS CD4+ and CD8+ T cells is also present at the transcriptional level, as shown by reduced IL-2 and IFN-γ mRNA transcripts after TCR/CD28 triggering. The reduced transcription of Th1 cytokine genes in WAS CD4+ T cells is associated with a defective induction of T-bet mRNA and a reduction in the early nuclear recruitment of NFAT-1, while the defective activation of WAS CD8+ T cells correlates with reduced nuclear recruitment of both NFAT-1 and NFAT-2. Together, our data indicate that WASP regulates the transcriptional activation of T cells and is required specifically for Th1 cytokine production
    • …
    corecore