24 research outputs found

    Leaf-associated microbiomes of grafted tomato plants

    Get PDF
    Bacteria and fungi form complex communities (microbiomes) in above- and below-ground organs of plants, contributing to hosts’ growth and survival in various ways. Recent studies have suggested that host plant genotypes control, at least partly, plant-associated microbiome compositions. However, we still have limited knowledge of how microbiome structures are determined in/on grafted crop plants, whose above-ground (scion) and below-ground (rootstock) genotypes are different with each other. By using eight varieties of grafted tomato plants, we examined how rootstock genotypes could determine the assembly of leaf endophytic microbes in field conditions. An Illumina sequencing analysis showed that both bacterial and fungal community structures did not significantly differ among tomato plants with different rootstock genotypes: rather, sampling positions in the farmland contributed to microbiome variation in a major way. Nonetheless, a further analysis targeting respective microbial taxa suggested that some bacteria and fungi could be preferentially associated with particular rootstock treatments. Specifically, a bacterium in the genus Deinococcus was found disproportionately from ungrafted tomato individuals. In addition, yeasts in the genus Hannaella occurred frequently on the tomato individuals whose rootstock genotype was “Ganbarune”. Overall, this study suggests to what extent leaf microbiome structures can be affected/unaffected by rootstock genotypes in grafted crop plants

    The PATROL1 function in roots contributes to the increase in shoot biomass

    Get PDF
    PATROL1 (PROTON ATPase TRANSLOCATION CONTROL 1), a protein with a MUN domain, is involved in the intercellular trafficking of AHA1 H⁺-ATPase to the plasma membrane in guard cells. This allows for larger stomatal opening and more efficient photosynthesis, leading to increased biomass. Although PATROL1 is expressed not only in stomata but also in other tissues of the shoot and root, the role in other tissues than stomata has not been determined yet. Here, we investigated PATROL1 functions in roots using a loss-of-function mutant and an overexpressor. Cytological observations revealed that root meristematic size was significantly smaller in the mutant resulting in the short primary root. Grafting experiments showed that the shoot biomass of the mutant scion was increased when it grafted onto wild-type or overexpressor rootstocks. Conversely, grafting of the overexpressor scion shoot enhanced the growth of the mutant rootstock. The leaf temperatures of the grafted plants were consistent with those of their respective genotypes, indicating cell-autonomous behavior of stomatal movement and independent roles of PATROL1 in plant growth. Moreover, plasma membrane localization of AHA1 was not altered in root epidermal cells in the patrol1 mutant implying existence of a different mode of PATROL1 action in roots. Thus PATROL1 plays a role in root meristem and contributes to increase shoot biomass

    Microfluidic Device for Simple Diagnosis of Plant Growth Condition by Detecting miRNAs from Filtered Plant Extracts

    Get PDF
    植物の生育状態を野外で早期診断できる装置を開発〜ストレスに応答して生じるmiRNAを葉から検出〜.京都大学プレスリリース. 2024-04-04.Plants are exposed to a variety of environmental stress, and starvation of inorganic phosphorus can be a major constraint in crop production. In plants, in response to phosphate deficiency in soil, miR399, a type of microRNA (miRNA), is up-regulated. By detecting miR399, the early diagnosis of phosphorus deficiency stress in plants can be accomplished. However, general miRNA detection methods require complicated experimental manipulations. Therefore, simple and rapid miRNA detection methods are required for early plant nutritional diagnosis. For the simple detection of miR399, microfluidic technology is suitable for point-of-care applications because of its ability to detect target molecules in small amounts in a short time and with simple manipulation. In this study, we developed a microfluidic device to detect miRNAs from filtered plant extracts for the easy diagnosis of plant growth conditions. To fabricate the microfluidic device, verification of the amine-terminated glass as the basis of the device and the DNA probe immobilization method on the glass was conducted. In this device, the target miRNAs were detected by fluorescence of sandwich hybridization in a microfluidic channel. For plant stress diagnostics using a microfluidic device, we developed a protocol for miRNA detection by validating the sample preparation buffer, filtering, and signal amplification. Using this system, endogenous sly-miR399 in tomatoes, which is expressed in response to phosphorus deficiency, was detected before the appearance of stress symptoms. This early diagnosis system of plant growth conditions has a potential to improve food production and sustainability through cultivation management

    Combination of genetic analysis and ancient literature survey reveals the divergence of traditional Brassica rapa varieties from Kyoto, Japan

    Get PDF
    京の伝統野菜ミブナの育種の歴史を解明. 京都大学プレスリリース. 2021-06-02.Since ancient times, humans have bred several plants that we rely on today. However, little is known about the divergence of most of these plants. In the present study, we investigated the divergence of Mibuna (Brassica rapa L. subsp. nipposinica L. H. Bailey), a traditional leafy vegetable in Kyoto (Japan), by combining genetic analysis and a survey of ancient literature. Mibuna is considered to have been bred 200 years ago from Mizuna, another traditional leafy vegetable in Kyoto. Mibuna has simple spatulate leaves, whereas Mizuna has characteristic serrated leaves. The quantitative trait loci (QTL) and gene expression analyses suggested that the downregulation of BrTCP15 expression contributed to the change in the leaf shape from serrated to simple spatulate. Interestingly, the SNP analysis indicated that the genomic region containing the BrTCP15 locus was transferred to Mibuna by introgression. Furthermore, we conducted a survey of ancient literature to reveal the divergence of Mibuna and found that hybridization between Mizuna and a simple-leaved turnip might have occurred in the past. Indeed, the genomic analysis of multiple turnip cultivars showed that one of the cultivars, Murasakihime, has almost the same sequence in the BrTCP15 region as Mibuna. These results suggest that the hybridization between Mizuna and turnip has resulted in the establishment of Mibuna

    An improved method for the highly specific detection of transcription start sites

    Get PDF
    遺伝子の転写開始点の検出法TSS-seq2を開発 --メッセンジャーRNAの5’末端を高い特異性で検出--. 京都大学プレスリリース. 2023-11-28.Precise detection of the transcriptional start site (TSS) is a key for characterizing transcriptional regulation of genes and for annotation of newly sequenced genomes. Here, we describe the development of an improved method, designated ‘TSS-seq2.’ This method is an iterative improvement of TSS-seq, a previously published enzymatic cap-structure conversion method to detect TSSs in base sequences. By modifying the original procedure, including by introducing split ligation at the key cap-selection step, the yield and the accuracy of the reaction has been substantially improved. For example, TSS-seq2 can be conducted using as little as 5 ng of total RNA with an overall accuracy of 96%; this yield a less-biased and more precise detection of TSS. We then applied TSS-seq2 for TSS analysis of four plant species that had not yet been analyzed by any previous TSS method

    Discovery of pollen tube-dependent ovule enlargement morphology phenomenon, a new step in plant reproduction

    No full text
    In animals, when semen is discharged into the uterus, the seminal plasma carries the sperm to the egg. In plants, the function of pollen tube contents (PTC) is analogous to that of the seminal plasma in animals, i.e., carrying sperm cells to the ovules for fertilization. Because the function of the seminal plasma is essential for fertilization in animals, we propose that the function of PTC must be important for plant fertilization. To understand the function of PTC, we examined the transcriptional variation after the release of PTC into the embryo sac. The phenotypic analysis revealed that ovules were enlarged without fertilization when the PTC was released into the ovule, entirely consistent with the transcriptome analysis. We identified a new plant phenomenon, pollen tube-dependent ovule enlargement morphology (POEM) phenomenon that occurs only when the ovule accepts PTC, irrespective of fertilization. POEM is a new phase between the pollen tube guidance and fertilization phases as a reproductive step. Here we established the in vitro POEM assay, which effectively measures POEM activity. Using this assay, we identified that a simple dose of plant hormone(s) cannot induce POEM. We also showed that this assay could be a powerful tool for identifying POEM factor(s)

    Editorial: Systemic RNA Signalling in Plants.

    Full text link
    Notaguchi, M.; Pallás Benet, V.; Qiu, J.; Wang, X. (2022). Editorial: Systemic RNA Signalling in Plants. Frontiers in Plant Science. 13:1-2. https://doi.org/10.3389/fpls.2022.878728121
    corecore