556 research outputs found
Chemical composition and origin of nebulae around Luminous Blue Variables
We use the analysis of the heavy element abundances (C, N, O, S) in
circumstellar nebulae around Luminous Blue Variables to infer the evolutionary
phase in which the material has been ejected.
(1) We discuss the different effects that may have changed the gas
composition of the nebula since it was ejected
(2) We calculate the expected abundance changes at the stellar surface due to
envelope convection in the red supergiant phase. If the observed LBV nebulae
are ejected during the RSG phase, the abundances of the LBV nebulae require a
significantly smaller amount of mass to be lost than assumed in evolutionary
models.
(3) We calculate the changes in the surface composition during the main
sequence phase by rotation induced mixing. If the nebulae are ejected at the
end of the MS-phase, the abundances in LBV nebulae are compatible with mixing
times between 5 x 10^6 and 1 x 10^7 years. The existence of ON stars supports
this scenario.
(4) The predicted He/H ratio in the nebulae are significantly smaller than
the current observed photospheric values of their central stars.
Combining various arguments we show that the LBV nebulae are ejected during
the blue SG phase and that the stars have not gone through a RSG phase. The
chemical enhancements are due to rotation induced mixing, and the ejection is
possibly triggered by near-critical rotation. During the ejection, the outflow
was optically thick, which resulted in a large effective radius and a low
effective temperature. This also explains the observed properties of LBV dust.Comment: 18 pages, 4 figures, to be published in The Astrophysical Journal,
April 20, 200
The dusty Nebula surrounding HR Car: a Spitzer view
We present mid-IR observations of the Galactic Luminous Blue Variable (LBV)
HR Car and its associated nebula carried out with the Spitzer Space Telescope
using both IRAC and IRS, as part of a GTO program aimed to study stellar ejecta
from evolved stars. Our observations reveal a rich mid-IR spectrum of the inner
nebula showing both solid state and atomic gas signatures. Strong
low-excitation atomic fine structure lines such as m [\ion{Fe}{2}]
and m [\ion{Si}{2}], indicate, for the first time, the presence of a
PDR in this object class. While the physics and chemistry of the low-excitation
gas appears to be dominated by photodissociation, a possible contribution due
to shocks can be inferred from the evidence of gas phase Fe abundance
enhancement. The presence of amorphous silicates, inferred from the observed
characteristic broad feature at m located in the inner nebula, suggests
that dust has formed during the LBV outburst. This is in contrast with the
detection of crystalline dust in other probably more evolved Galactic LBVs,
which is similar to the crystalline dust observed in red supergiants. This has
been considered to be evidence of dust production during evolutionary phases
prior to the outburst.Comment: 27 pages, 6 figures. accepted by Ap
Validation of the Childhood Career Development Scale Among Italian Middle School Students
During early adolescence, individuals engage in exploring educational opportunities, beginning to develop a career identity, contemplate future careers, and make tentative career decisions. Choices made during this period may have a strong effect on one\u2019s academic and career future, and in many countries, young adolescents must make important and sometimes final academic and career choices that impact the rest of their lives. Despite this, research on early adolescence is severely lacking. To address this gap, a validation study of the Childhood Career Development Scale (CCDS) was conducted with a young adolescent Italian sample. Consistent with previous research with younger samples, support was found for an eight-factor structure of the CCDS. Convergent validity was supported by positive associations with exploration, students\u2019 ideas, attitudes, and behaviors regarding their academic and career future and career self-efficacy. These findings support Super\u2019s dimensional model of childhood career development through early adolescence as originally theorized
Star formation history in the SMC: the case of NGC602
Deep HST/ACS photometry of the young cluster NGC 602, located in the remote
low density "wing" of the Small Magellanic Cloud, reveals numerous pre-main
sequence stars as well as young stars on the main sequence. The resolved
stellar content thus provides a basis for studying the star formation history
into recent times and constraining several stellar population properties, such
as the present day mass function, the initial mass function and the binary
fraction. To better characterize the pre-main sequence population, we present a
new set of model stellar evolutionary tracks for this evolutionary phase with
metallicity appropriate for the Small Magellanic Cloud (Z = 0.004). We use a
stellar population synthesis code, which takes into account a full range of
stellar evolution phases to derive our best estimate for the star formation
history in the region by comparing observed and synthetic color-magnitude
diagrams. The derived present day mass function for NGC 602 is consistent with
that resulting from the synthetic diagrams. The star formation rate in the
region has increased with time on a scale of tens of Myr, reaching in the last 2.5 Myr, comparable to what is
found in Galactic OB associations. Star formation is most complete in the main
cluster but continues at moderate levels in the gas-rich periphery of the
nebula.Comment: 24 pages. Accepted for publication in A
Closed-form sums for some perturbation series involving associated Laguerre polynomials
Infinite series sum_{n=1}^infty {(alpha/2)_n / (n n!)}_1F_1(-n, gamma, x^2),
where_1F_1(-n, gamma, x^2)={n!_(gamma)_n}L_n^(gamma-1)(x^2), appear in the
first-order perturbation correction for the wavefunction of the generalized
spiked harmonic oscillator Hamiltonian H = -d^2/dx^2 + B x^2 + A/x^2 +
lambda/x^alpha 0 0, A >= 0. It is proved that the
series is convergent for all x > 0 and 2 gamma > alpha, where gamma = 1 +
(1/2)sqrt(1+4A). Closed-form sums are presented for these series for the cases
alpha = 2, 4, and 6. A general formula for finding the sum for alpha/2 = 2 + m,
m = 0,1,2, ..., in terms of associated Laguerre polynomials, is also provided.Comment: 16 page
A Prediction of Brown Dwarfs in Ultracold Molecular Gas
A recent model for the stellar initial mass function (IMF), in which the
stellar masses are randomly sampled down to the thermal Jeans mass from
hierarchically structured pre-stellar clouds, predicts that regions of
ultra-cold CO gas, such as those recently found in nearby galaxies by Allen and
collaborators, should make an abundance of Brown Dwarfs with relatively few
normal stars. This result comes from the low value of the thermal Jeans mass,
considering that the hierarchical cloud model always gives the Salpeter IMF
slope above this lower mass limit. The ultracold CO clouds in the inner disk of
M31 have T~3K and pressures that are probably 10 times higher than in the solar
neighborhood. This gives a mass at the peak of the IMF equal to 0.01 Msun, well
below the Brown Dwarf limit of 0.08 Msun. Using a functional approximation to
the IMF, the ultracold clouds would have 50% of the star-like mass and 90% of
the objects below the Brown Dwarf limit. The brightest of the Brown Dwarfs in
M31 should have an apparent, extinction-corrected K-band magnitude of ~21 mag
in their pre-main sequence phase.Comment: 13 pages, 2 figures, to be published in Astrophysical Journal, Vol
522, September 10, 199
- …