271 research outputs found

    Functional renormalization-group approach to the Pokrovsky-Talapov model via modified massive Thirring fermion model

    Full text link
    A possibility of the topological Kosterlitz-Thouless~(KT) transition in the Pokrovsky-Talapov~(PT) model is investigated by using the functional renormalization-group (RG) approach by Wetterich. Our main finding is that the nonzero misfit parameter of the model, which can be related with the linear gradient term (Dzyaloshinsky-Moriya interaction), makes such a transition impossible, what contradicts the previous consideration of this problem by non-perturbative RG methods. To support the conclusion the initial PT model is reformulated in terms of the 2D theory of relativistic fermions using an analogy between the 2D sine-Gordon and the massive Thirring models. In the new formalism the misfit parameter corresponds to an effective gauge field that enables to include it in the RG procedure on an equal footing with the other parameters of the theory. The Wetterich equation is applied to obtain flow equations for the parameters of the new fermionic action. We demonstrate that these equations reproduce the KT type of behavior if the misfit parameter is zero. However, any small nonzero value of the quantity rules out a possibility of the KT transition. To confirm the finding we develop a description of the problem in terms of the 2D Coulomb gas model. Within the approach the breakdown of the KT scenario gains a transparent meaning, the misfit gives rise to an effective in-plane electric field that prevents a formation of bound vortex-antivortex pairs.Comment: 12 pages, 3 figure

    Interplay of superconductivity and localization near a 2D ferromagnetic quantum critical point

    Full text link
    We study the superconducting instability of a two-dimensional disordered Fermi liquid weakly coupled to the soft fluctuations associated with proximity to an Ising-ferromagnetic quantum critical point. We derive interaction-induced corrections to the Usadel equation governing the superconducting gap function, and show that diffusion and localization effects drastically modify the interplay between fermionic incoherence and strong pairing interactions. In particular, we obtain the phase diagram, and demonstrate that: (i) there is an intermediate range of disorder strength where superconductivity is enhanced, eventually followed by a tendency towards the superconductor-insulator transition at stronger disorder; and (ii) diffusive particle-particle modes (so-called `Cooperons') acquire anomalous dynamical scaling z=4z=4, indicating strong non-Fermi liquid behaviour.Comment: 5+10 pages, 4 figure

    Entropy and de Haas-van Alphen oscillations of a three-dimensional marginal Fermi liquid

    Full text link
    We study de Haas-van Alphen oscillations in a marginal Fermi liquid resulting from a three-dimensional metal tuned to a quantum-critical point (QCP). We show that the conventional approach based on extensions of the Lifshitz-Kosevich formula for the oscillation amplitudes becomes inapplicable when the correlation length exceeds the cyclotron radius. This breakdown is due to (i) non-analytic finite-temperature contributions to the fermion self-energy (ii) an enhancement of the oscillatory part of the self-energy by quantum fluctuations, and (iii) non-trivial dynamical scaling laws associated with the quantum critical point. We properly incorporate these effects within the Luttinger-Ward-Eliashberg framework for the thermodynamic potential by treating the fermionic and bosonic contributions on equal footing. As a result, we obtain the modified expressions for the oscillations of entropy and magnetization that remain valid in the non-Fermi liquid regime.Comment: 20+6 pages, 6 figure

    Statistics of Green's functions on a disordered Cayley tree and the validity of forward scattering approximation

    Get PDF
    The accuracy of the forward scattering approximation for two-point Green's functions of the Anderson localization model on the Cayley tree is studied. A relationship between the moments of the Green's function and the largest eigenvalue of the linearized transfer-matrix equation is proved in the framework of the supersymmetric functional-integral method. The new large-disorder approximation for this eigenvalue is derived and its accuracy is established. Using this approximation the probability distribution of the two-point Green's function is found and compared with that in the forward scattering approximation (FSA). It is shown that FSA overestimates the role of resonances and thus the probability for the Green's function to be significantly larger than its typical value. The error of FSA increases with increasing the distance between points in a two-point Green's function

    Pair density wave order from electron repulsion

    Full text link
    A pair density wave (PDW) is a superconductor whose order parameter is a periodic function of space, without an accompanying spatially-uniform component. Since PDWs are not the outcome of a weak-coupling instability of a Fermi liquid, a generic pairing mechanism for PDW order has remained elusive. We describe and solve models having robust PDW phases. To access the intermediate coupling limit, we invoke large NN limits of Fermi liquids with repulsive BCS interactions that admit saddle point solutions. We show that the requirements for long range PDW order are that the repulsive BCS couplings must be non-monotonic in space and that their strength must exceed a threshold value. We obtain a phase diagram with both finite temperature transitions to PDW order, and a T=0T=0 quantum critical point, where non-Fermi liquid behavior occurs.Comment: 10 pages including supplementary materials + 4 fig

    Optical chirality in gyrotropic media: Symmetry approach

    Get PDF
    We discuss optical chirality in different types of gyrotropic media. Our analysis is based on the formalism of nongeometric symmetries of Maxwell's equations in vacuum generalized to material media with given constituent relations. This approach enables us to directly derive conservation laws related to nongeometric symmetries. For isotropic chiral media, we demonstrate that like a free electromagnetic field, both duality and helicity generators belong to the basis set of nongeometric symmetries that guarantees the conservation of optical chirality. In gyrotropic crystals, which exhibit natural optical activity, the situation is quite different from the case of isotropic media. For light propagating along a certain crystallographic direction, there arises two distinct cases: (1) the duality is broken but the helicity is preserved, or (2) only the duality symmetry survives. We show that the existence of one of these symmetries (duality or helicity) is enough to define optical chirality. In addition, we present examples of low-symmetry media, where optical chirality cannot be defined. © 2017 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.This work was supported by the Government of the Russian Federation Program 02.A03.21.0006 and by RFBR Grant No. 17-52-50013. The authors also acknowledge support by JSPS KAKENHI Grants Nos. 25220803, 17H02923, the JSPS Core-to-Core Program, A. Advanced Research Networks, and the JSPS Bilateral (Japan-Russia) Joint Research Projects. IP acknowledges financial support by Center for Chiral Science, Hiroshima University and by the Ministry of Education and Science of the Russian Federation, Grant No. MK-6230.2016.2

    Magnetic properties of HO2 thin films

    Full text link
    We report on the magnetic and transport studies of hafnium oxide thin films grown by pulsed-laser deposition on sapphire substrates under different oxygen pressures, ranging from 10-7 to 10-1 mbar. Some physical properties of these thin films appear to depend on the oxygen pressure during growth: the film grown at low oxygen pressure (P ~= 10-7 mbar) has a metallic aspect and is conducting, with a positive Hall signal, while those grown under higher oxygen pressures (7 x 10-5 <= P <= 0.4 mbar) are insulating. However, no intrinsic ferromagnetic signal could be attributed to the HfO2 films, irrespective of the oxygen pressure during the deposition.Comment: 1
    corecore