157 research outputs found

    Anisotropic shear melting and recrystallization of a two-dimensional complex (dusty) plasma

    Full text link
    A two-dimensional plasma crystal was melted by suddenly applying localized shear stress. A stripe of particles in the crystal was pushed by the radiation pressure force of a laser beam. We found that the response of the plasma crystal to stress and the eventual shear melting depended strongly on the crystal's angular orientation relative to the laser beam. Shear stress and strain rate were measured, from which the spatially resolved shear viscosity was calculated. The latter was shown to have minima in the regions with high velocity shear, thus demonstrating shear thinning. Shear-induced reordering was observed in the steady-state flow, where particles formed strings aligned in the flow direction.Comment: 7 pages, 8 figures, submitted to Physical Review

    Supersonic dislocations observed in a plasma crystal

    Full text link
    Experimental results on the dislocation dynamics in a two-dimensional plasma crystal are presented. Edge dislocations were created in pairs in lattice locations where the internal shear stress exceeded a threshold and then moved apart in the glide plane at a speed higher than the sound speed of shear waves, CTC_T. The experimental system, a plasma crystal, allowed observation of this process at an atomistic (kinetic) level. The early stage of this process is identified as a stacking fault. At a later stage, supersonically moving dislocations generated shear-wave Mach cones

    Microstructure of a liquid complex (dusty) plasma under shear

    Full text link
    The microstructure of a strongly coupled liquid undergoing a shear flow was studied experimentally. The liquid was a shear melted two-dimensional plasma crystal, i.e., a single-layer suspension of micrometer-size particles in a rf discharge plasma. Trajectories of particles were measured using video microscopy. The resulting microstructure was anisotropic, with compressional and extensional axes at around ±45∘\pm 45^{\circ} to the flow direction. Corresponding ellipticity of the pair correlation function g(r)g({\bf r}) or static structure factor S(k)S(\bf{k}) gives the (normalized) shear rate of the flow.Comment: 5 pages, 6 figure

    Observation of particle pairing in a two-dimensional plasma crystal

    Full text link
    The observation is presented of naturally occurring pairing of particles and their cooperative drift in a two-dimensional plasma crystal. A single layer of plastic microspheres was suspended in the plasma sheath of a capacitively coupled rf discharge in argon at a low pressure of 1 Pa. The particle dynamics were studied by combining the top-view and side-view imaging of the suspension. Cross analysis of the particle trajectories allowed us to identify naturally occurring metastable pairs of particles. The lifetime of pairs was long enough for their reliable identification.Comment: 5 pages, 4 figure

    First direct measurement of optical phonons in 2D plasma crystals

    Full text link
    Spectra of phonons with out-of-plane polarization were studied experimentally in a 2D plasma crystal. The dispersion relation was directly measured for the first time using a novel method of particle imaging. The out-of-plane mode was proven to have negative optical dispersion, comparison with theory showed good agreement. The effect of the plasma wakes on the dispersion relation is briefly discussed.Comment: submitted to Physical Review Letter

    Wave mode coupling due to plasma wakes in two-dimensional plasma crystals: In-depth view

    Full text link
    Experiments with two-dimensional (2D) plasma crystals are usually carried out in rf plasma sheaths, where the interparticle interactions are modified due to the presence of plasma wakes. The wake-mediated interactions result in the coupling between wave modes in 2D crystals, which can trigger the mode-coupling instability and cause melting. The theory predicts a number of distinct fingerprints to be observed upon the instability onset, such as the emergence of a new hybrid mode, a critical angular dependence, a mixed polarization, and distinct thresholds. In this paper we summarize these key features and provide their detailed discussion, analyze the critical dependence on experimental parameters, and highlight the outstanding issues

    Direct experimental observation of binary agglomerates in complex plasmas

    Full text link
    A defocusing imaging technique has been used as a diagnostic to identify binary agglomerates (dimers) in complex plasmas. Quasi-two-dimensional plasma crystal consisting of monodisperse spheres and binary agglomerates has been created where the agglomerated particles levitate just below the spherical particles without forming vertical pairs. Unlike spherical particles, the defocused images of binary agglomerates show distinct, stationary/periodically rotating interference fringe patterns. The results can be of fundamental importance for future experiments on complex plasmas

    Supersonic dislocations observed in a plasma crystal

    Full text link
    Experimental results on the dislocation dynamics in a two-dimensional plasma crystal are presented. Edge dislocations were created in pairs in lattice locations where the internal shear stress exceeded a threshold and then moved apart in the glide plane at a speed higher than the sound speed of shear waves, CTC_T. The experimental system, a plasma crystal, allowed observation of this process at an atomistic (kinetic) level. The early stage of this process is identified as a stacking fault. At a later stage, supersonically moving dislocations generated shear-wave Mach cones

    Direct observation of mode-coupling instability in two-dimensional plasma crystals

    Full text link
    Dedicated experiments on melting of 2D plasma crystals were carried out. The melting was always accompanied by spontaneous growth of the particle kinetic energy, suggesting a universal plasma-driven mechanism underlying the process. By measuring three principal dust-lattice (DL) wave modes simultaneously, it is unambiguously demonstrated that the melting occurs due to the resonance coupling between two of the DL modes. The variation of the wave modes with the experimental conditions, including the emergence of the resonant (hybrid) branch, reveals exceptionally good agreement with the theory of mode-coupling instability.Comment: 4 pages, submitted to Physical Review Letter

    Nonlinear regime of the mode-coupling instability in 2D plasma crystals

    Full text link
    The transition between linear and nonlinear regimes of the mode-coupling instability (MCI) operating in a monolayer plasma crystal is studied. The mode coupling is triggered at the centre of the crystal and a melting front is formed, which travels through the crystal. At the nonlinear stage, the mode coupling results in synchronisation of the particle motion and the kinetic temperature of the particles grows exponentially. After melting of the crystalline structure, the mean kinetic energy of the particles continued to grow further, preventing recrystallisation of the melted phase. The effect could not be reproduced in simulations employing a simple point-like wake model. This shows that at the nonlinear stage of the MCI a heating mechanism is working which was not considered so far.Comment: 6 pages, 4 figure
    • …
    corecore