A two-dimensional plasma crystal was melted by suddenly applying localized
shear stress. A stripe of particles in the crystal was pushed by the radiation
pressure force of a laser beam. We found that the response of the plasma
crystal to stress and the eventual shear melting depended strongly on the
crystal's angular orientation relative to the laser beam. Shear stress and
strain rate were measured, from which the spatially resolved shear viscosity
was calculated. The latter was shown to have minima in the regions with high
velocity shear, thus demonstrating shear thinning. Shear-induced reordering was
observed in the steady-state flow, where particles formed strings aligned in
the flow direction.Comment: 7 pages, 8 figures, submitted to Physical Review