4 research outputs found

    Strong acceleration of glacier area loss in the Greater Caucasus between 2000 and 2020

    Full text link
    An updated glacier inventory is important for understanding glacier behaviour given the accelerating glacier retreat observed around the world. Here, we present data from a new glacier inventory for two points in time (2000, 2020) covering the entire Greater Caucasus (Georgia, Russia, and Azerbaijan). Satellite imagery (Landsat, Sentinel, SPOT) was used to conduct a remote-sensing survey of glacier change. The 30 m resolution Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model (ASTER GDEM; 17 November 2011) was used to determine aspect, slope, and elevations, for all glaciers. Glacier margins were mapped manually and reveal that in 2000 the mountain range contained 2186 glaciers with a total glacier area of 1381.5 ± 58.2 km2. By 2020, the area had decreased to 1060.9 ± 33.6 km2 a reduction of 23.2 ± 3.8 % (320.6 ± 45.9 km2) or −1.16 % yr−1 over the last 20 years in the Greater Caucasus. Of the 2223 glaciers, 14 have an area > 10 km2, resulting in the 221.9 km2 or 20.9 % of total glacier area in 2020. The Bezengi Glacier with an area of 39.4 ± 0.9 km2 was the largest glacier mapped in the 2020 database. Glaciers between 1.0 and 5.0 km2 accounted for 478.1 km2 or 34.6 % in total area in 2000, while they accounted for 354.0 km2 or 33.4 % in total area in 2020. The rates of area shrinkage and mean elevation vary between the northern and southern and between the western, central, and eastern Greater Caucasus. Area shrinkage is significantly stronger in the eastern Greater Caucasus (−1.82 % yr−1), where most glaciers are very small. The observed increased summer temperatures and decreased winter precipitation along with increased Saharan dust deposition might be responsible for the predominantly negative mass balances of Djankuat and Garabashi glaciers with long-term measurements. Both glacier inventories are available from the Global Land Ice Measurements from Space (GLIMS) database and can be used for future studies

    The First Rock Glacier Inventory for the Greater Caucasus

    Get PDF
    Rock glaciers are an integral part of the periglacial environment. At the regional scale in the Greater Caucasus, there have been no comprehensive systematic efforts to assess the distribution of rock glaciers, although some individual parts of ranges have been mapped before. In this study we produce the first inventory of rock glaciers from the entire Greater Caucasus region—Russia, Georgia, and Azerbaijan. A remote sensing survey was conducted using Geo-Information System (GIS) and Google Earth Pro software based on high-resolution satellite imagery—SPOT, Worldview, QuickBird, and IKONOS, based on data obtained during the period 2004–2021. Sentinel-2 imagery from the year 2020 was also used as a supplementary source. The ASTER GDEM (2011) was used to determine location, elevation, and slope for all rock glaciers. Using a manual approach to digitize rock glaciers, we discovered that the mountain range contains 1461 rock glaciers with a total area of 297.8 ± 23.0 km2. Visual inspection of the morphology suggests that 1018 rock glaciers with a total area of 199.6 ± 15.9 km2 (67% of the total rock glacier area) are active, while the remaining rock glaciers appear to be relict. The average maximum altitude of all rock glaciers is found at 3152 ± 96 m above sea level (a.s.l.) while the mean and minimum altitude are 3009 ± 91 m and 2882 ± 87 m a.s.l., respectively. We find that the average minimum altitude of active rock glaciers is higher (2955 ± 98 m a.s.l.) than in relict rock glaciers (2716 ± 83 m a.s.l.). No clear difference is discernible between the surface slope of active (41.4 ± 3°) and relict (38.8 ± 4°) rock glaciers in the entire mountain region. This inventory provides a database for understanding the extent of permafrost in the Greater Caucasus and is an important basis for further research of geomorphology and palaeoglaciology in this region. The inventory will be submitted to the Global Land Ice Measurements from Space (GLIMS) database and can be used for future studies
    corecore