561 research outputs found

    Crystallization of a classical two-dimensional electron system: Positional and orientational orders

    Full text link
    Crystallization of a classical two-dimensional one-component plasma (electrons interacting with the Coulomb repulsion in a uniform neutralizing positive background) is investigated with a molecular dynamics simulation. The positional and the orientational correlation functions are calculated for the first time. We have found an indication that the solid phase has a quasi-long-range (power-law) positional order along with a long-range orientational order. This indicates that, although the long-range Coulomb interaction is outside the scope of Mermin's theorem, the absence of ordinary crystalline order at finite temperatures applies to the electron system as well. The `hexatic' phase, which is predicted between the liquid and the solid phases by the Kosterlitz-Thouless-Halperin-Nelson-Young theory, is also discussed.Comment: 3 pages, 4 figures; Corrected typos; Double columne

    Non-clasical Nucleation in Supercooled Nickel

    Full text link
    The dynamics of homogeneous nucleation and growth of crystalline nickel from the super-cooled melt is examined during rapid quenching using molecular dynamics and a modified embedded atom method potential. The character of the critical nuclei of the crystallization transition is examined using common neighbor analysis and visualization. At nucleation the saddle point droplet consists of randomly stacked planar structures with an in plane triangular order. These results are consistent with previous theoretical results that predict that the nucleation process in some metals is non-classical due to the presence of long-range forces and a spinodal.Comment: 4 pages, 5 figure

    Finite thermal conductivity in 1d lattices

    Get PDF
    We discuss the thermal conductivity of a chain of coupled rotators, showing that it is the first example of a 1d nonlinear lattice exhibiting normal transport properties in the absence of an on-site potential. Numerical estimates obtained by simulating a chain in contact with two thermal baths at different temperatures are found to be consistent with those ones based on linear response theory. The dynamics of the Fourier modes provides direct evidence of energy diffusion. The finiteness of the conductivity is traced back to the occurrence of phase-jumps. Our conclusions are confirmed by the analysis of two variants of this model.Comment: 4 pages, 3 postscript figure

    Molecular Dynamics Simulation of Spinodal Decomposition in Three-Dimensional Binary Fluids

    Get PDF
    Using large-scale molecular dynamics simulations of a two-component Lennard-Jones model in three dimensions, we show that the late-time dynamics of spinodal decomposition in concentrated binary fluids reaches a viscous scaling regime with a growth exponent n=1n=1, in agreement with experiments and a theoretical analysis for viscous growth.Comment: 4 pages, 3 figure

    Meridional Distribution of Middle-Energy Protons and Pressure-Driven Currents in the Nightside Inner Magnetosphere: Arase Observations

    Get PDF
    We examined the average meridional distribution of middle‐energy protons (10–180 keV) and pressure‐driven currents in the nightside (20–04 hr magnetic local time) ring current region during moderately disturbed times using the Arase satellite\u27s data. Because the Arase satellite has a large inclination orbit of 31°, it covers the magnetic latitude (MLAT) in the range of −40° to 40° and a radial distance of <6RE. We found that the plasma pressure decreased significantly with increasing MLAT. The plasma pressure on the same L* shell at 30° < MLAT < 40° was ∼10–60% of that at 0° < 4 MLAT < 10°, and the rate of decrease was larger on lower L* shells. The pressure anisotropy, derived as the perpendicular pressure divided by the parallel pressure minus 1, decreased with radial distance and showed a weak dependence on MLAT. The magnitude of the plasma beta at 30°<MLAT<40° was 1 or 2 orders smaller than that at 0°<MLAT<10°. The plasma pressure normalized by the value at 0°<MLAT<10° estimated from the magnetic strength and anisotropy was roughly consistent with the observed plasma pressure for L*=3.5–5.5. The azimuthal pressure‐gradient current derived from the plasma pressure was distributed over MLAT∼0–20°, while the curvature current was limited within MLAT∼0–10°. We suggest that the latitudinal dependence should be taken into account in interpretations of plasma parameters in successive orbits during magnetic storms

    Extensional rupture of model non-Newtonian fluid filaments

    Full text link
    We present molecular dynamics computer simulations of filaments of model non-Newtonian liquid stretched in a uniaxial deformation to the point of breaking. The liquid consists of Lennard-Jones monomers bound into chains of 100 monomers by nonlinear springs, and several different constant velocity and constant strain rate deformations are considered. Generally we observe nonuniform extensions originating in an interplay between the stretching forces and elastic and capillary restoring mechanisms, leading to highly uneven shapes and alternating stretched and unstretched regions of liquid. Except at the fastest pulling speeds, the filaments continue to thin indefinitely and break only when depleted of molecules, rather than common viscoelastic rupture mechanisms.Comment: 7 pages text, 14 pages (eps) figure

    Heat conduction in one dimensional nonintegrable systems

    Full text link
    Two classes of 1D nonintegrable systems represented by the Fermi-Pasta-Ulam (FPU) model and the discrete ϕ4\phi^4 model are studied to seek a generic mechanism of energy transport in microscopic level sustaining macroscopic behaviors. The results enable us to understand why the class represented by the ϕ4\phi^4 model has a normal thermal conductivity and the class represented by the FPU model does not even though the temperature gradient can be established.Comment: 4 Revtex Pages, 4 Eps figures included, to appear in Phys. Rev. E, March 200

    The elastic constants of MgSiO3 perovskite at pressures and temperatures of the Earth's mantle

    Full text link
    The temperature anomalies in the Earth's mantle associated with thermal convection1 can be inferred from seismic tomography, provided that the elastic properties of mantle minerals are known as a function of temperature at mantle pressures. At present, however, such information is difficult to obtain directly through laboratory experiments. We have therefore taken advantage of recent advances in computer technology, and have performed finite-temperature ab initio molecular dynamics simulations of the elastic properties of MgSiO3 perovskite, the major mineral of the lower mantle, at relevant thermodynamic conditions. When combined with the results from tomographic images of the mantle, our results indicate that the lower mantle is either significantly anelastic or compositionally heterogeneous on large scales. We found the temperature contrast between the coldest and hottest regions of the mantle, at a given depth, to be about 800K at 1000 km, 1500K at 2000 km, and possibly over 2000K at the core-mantle boundary.Comment: Published in: Nature 411, 934-937 (2001

    Stability of gold nanowires at large Au-Au separations

    Full text link
    The unusual structural stability of gold nanowires at large separations of gold atoms is explained from first-principles quantum mechanical calculations. We show that undetected light atoms, in particular hydrogen, stabilize the experimentally observed structures, which would be unstable in pure gold wires. The enhanced cohesion is due to the partial charge transfer from gold to the light atoms. This finding should resolve a long-standing controversy between theoretical predictions and experimental observations.Comment: 7 pages, 3 figure

    Free energy and molecular dynamics calculations for the cubic-tetragonal phase transition in zirconia

    Full text link
    The high-temperature cubic-tetragonal phase transition of pure stoichiometric zirconia is studied by molecular dynamics (MD) simulations and within the framework of the Landau theory of phase transformations. The interatomic forces are calculated using an empirical, self-consistent, orthogonal tight-binding (SC-TB) model, which includes atomic polarizabilities up to the quadrupolar level. A first set of standard MD calculations shows that, on increasing temperature, one particular vibrational frequency softens. The temperature evolution of the free energy surfaces around the phase transition is then studied with a second set of calculations. These combine the thermodynamic integration technique with constrained MD simulations. The results seem to support the thesis of a second-order phase transition but with unusual, very anharmonic behaviour above the transition temperature
    corecore