We present molecular dynamics computer simulations of filaments of model
non-Newtonian liquid stretched in a uniaxial deformation to the point of
breaking. The liquid consists of Lennard-Jones monomers bound into chains of
100 monomers by nonlinear springs, and several different constant velocity and
constant strain rate deformations are considered. Generally we observe
nonuniform extensions originating in an interplay between the stretching forces
and elastic and capillary restoring mechanisms, leading to highly uneven shapes
and alternating stretched and unstretched regions of liquid. Except at the
fastest pulling speeds, the filaments continue to thin indefinitely and break
only when depleted of molecules, rather than common viscoelastic rupture
mechanisms.Comment: 7 pages text, 14 pages (eps) figure