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Using large-scale molecular dynamics simulations of a two-component Lennard-Jones model in three
dimensions, we show that the late-time dynamics of spinodal decomposition in concentrated binary
fluids reaches a viscous scaling regime with a growth exponentn ­ 1, in agreement with experiments
and a theoretical analysis for viscous growth. [S0031-9007(96)01177-5]

PACS numbers: 64.75.+g, 05.70.Ln, 64.60.Cn, 64.70.Ja

The dynamics of phase separation in multicomponent
fluids involves very rich and general phenomena and has
therefore been the subject of intensive studies in recent
years. The dynamics of first-order phase transitions in
general, besides being of technological importance, is
particularly interesting because of the emergence of one
characteristic length scaleRstd during the late times of
the dynamics.Rstd is related to the average domain size
of the ordering phase and displays a simple power-law
dependence with timeRstd , tn, wheren is the growth
exponent. The presence of one characteristic length scale
during the late times leads to an interesting dynamical
scaling behavior, as can be detected from the density-
fluctuation pair-correlation functionGsr, td ­ gfryRstdg,
or the structure factorSsq, td ­ RstddFsxd, where d is
the spatial dimension andx ­ qRstd is the scaled wave
vector [1].

Whereas the dynamics of phase separation in alloys,
with conserved order parameter, is quite well understood
in terms of the Lifshitz-Slyozov theory [2] and is char-
acterized by a growth exponentn ­ 1y3, independent of
spatial dimension, volume fraction [1], and even the num-
ber of coexisting phases [3], the dynamics in fluids is a
more complicated phenomenon due to the coupling of the
additional velocity field (which is absent in alloys) to the
ordering field. Consequently various competing effects
may appear in phase-separating fluids leading to various
growth exponents depending on the strength of the cou-
pling between the velocity field and the ordering field, on
the volume fraction [4–6], on the spatial dimension, and
even on the number of components [7].

There is no satisfactory theory for the phase separation
dynamics in fluids. Thus our understanding of the phe-
nomenon is achieved essentially through numerical stud-
ies and dimensional analysis of the relevant dynamical
model. Using heuristic arguments, Siggia [4] was the first
to propose that the growth exponent isn ­ 1 in phase-
separating binary fluids with relatively comparable vol-
ume fractions of the two components. This growth regime
is due to an instability of the tubular domain structure in
binary fluids, leading to the transport of material from the

necks to the bulges. The numerical studies of the phe-
nomenon are mainly carried out by means of three differ-
ent methods: numerical integration of the corresponding
kinetic phase-field model known as model H [8]; lattice-
Boltzmann (LB) simulations [9]; and molecular dynam-
ics (MD) simulations [10]. In contrast to the first two
methods, in a molecular dynamics simulation, the hydro-
dynamic modes arise naturally from the microscopic in-
teractions between the molecules subsequent to a quench
into the fluid phase. There have been some concerns with
regard to the validity of molecular dynamics in studying
the late-time dynamics of phase separation due to the very
small time scale involved. It should be noted that phase
separation in simple fluids is naturally a very fast process.
Therefore in order to probe the dynamics, experimentalists
must perform very shallow quenches using the advantage
of the increased time scale due to critical slowing down.
In contrast, quenches are very deep in a typical molecular
dynamics simulation.

The numerical integration of model H leads to an
asymptotic growth exponentn ­ 1, in agreement with
Siggia’s prediction. LB simulations also find the same
result [9]. However, a recent MD simulation on the
two-component Lennard-Jones potential by Maet al. [10]
suggests a growth regime with an exponent very close to
2y3. As we will see later, such an exponent is due to
inertial effects and can be calculated from dimensional
analysis. A more recent model H simulation by Lookman
et al. [11] finds that by decreasing the shear viscosity
of the fluid, a growth exponent ofn ­ 2y3 can be
observed. We are therefore faced with the problem
that whereas numerical simulation calculations in the
case of phase separation in alloys agree with the the-
oretical predictions, numerical simulations which are
expected to most faithfully describe the true dynamics,
i.e., molecular dynamics simulations, are not in agree-
ment with theoretical predictions in the case of phase
separation in binary fluids. In order to elucidate this ap-
parent discrepancy between the previous numerical studies
and the MD simulations of Maet al.,we have carried out a
large-scale and systematic molecular dynamics simulation
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of the two-component Lennard-Jones model and found
results which disagree with the MD simulation of Ma
et al. but are fully consistent with experiments and pre-
vious model H and lattice-Boltzmann simulations. It is
worth noting that the present study is the first large-scale
MD simulation on three-dimensional binary fluids in
which the viscous regime is observed.

In our simulation model, we considerN monoatomic
molecules interacting through the following two-
component Lennard-Jones potential:
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with ai ­ 1 if i is an A molecule, andaj ­ 2 if i is a
B molecule. In Eq. (1),rij is the distance separating the
ith molecule from thejth molecule, andrc

aiaj
is a cutoff

distance which is equal to2.5s for ai ­ aj and 21y6s

for ai fi aj. usxd is the standard Heaviside function.
The phase diagram of this model, which has recently been
calculated by means of mean field theory and Monte Carlo
simulation, has a consolute point atTc , s4.7 6 0.2de for
a fluid density ofr ­ 0.8s23 [12]. We have performed
critical quenches at temperatureskBT ­ 2, 3, 3.5, 3.75,
and 4e as well as off-critical quenches atkBT ­ 2e.
Notice that we have not made quenches to very low
temperatures in order to avoid the solid-gas coexistence
region. The temperature is controlled by a Nosé-Hoover
thermostat [13], and the Hamilton equations are integrated
using the leap-frog algorithm with a time step ofDt ­
0.005t where the time scale ist ­

p
ms2ye, m being

the molecular mass. In all of our simulations, the
total number of molecules isN ­ 343 000, an order of
magnitude larger than the largest system size considered
by Ma et al. [10]. Our simulations were performed
on an IBM SP2 parallel machine using 12 processors.
Furthermore, a statistical average is performed for each
quench; 16 runs forkBT ­ 2e and 4 runs for all other
quenches.

We have calculated the correlation functionGsr, td ­
kfsr, tdfs0, tdl, wherefsr, td ­ frAsr, td 2 rBsr, tdgyr

is the order parameter andrA and rB are the local den-
sities of the two components. We have also calculated
the structure factorSsq, td ­ kjf̃sq, tdj2lyV , wheref̃sqd
is the Fourier-mode of the order parameter andV is the
system volume. Both the structure factor and the correla-
tion function are then spherically averaged. The average
domain size is then defined as the first zero of the correla-
tion functionRGstd and as thenth moment of the structure
factorRnstd ­ 2pf

R
dqSsq, tdy

R
dqqnSsq, tdg1yn.

The time evolution of the pair-correlation function is
shown in the inset of Fig. 1 for a quench atkBT ­ 2e.
The presence of the decaying oscillations inGsr , td in-

dicates the occurrence of phase-separated domains which
are correlated within short distances, due to the conserva-
tion of the ordering field. The first zero of the correlation
function increases with time implying a coarsening of the
domain structure. We have verified that the system has
reached a dynamical scaling regime by observing the scal-
ing of the correlation function, shown in Fig. 1, for times
larger than aboutt ­ 80t. Good scaling is also observed
in the structure factor (not shown). The presence of a
unique length scale in the system at late times implies that
the width of the interfaces become vanishingly small com-
pared to the domain size. As a result, the structure factor
should scale asq2sd11d for large q, which is known as
Porod’s law and is usually observed in phase-separating
systems at late times. Indeed we found that the structure
factor is consistent with Porod’s law, implying that the
phase separation process in our simulations is well within
a dynamical scaling regime.

Now that we are confident that the systems we are
dealing with in our simulations are safely within a scaling
regime, we turn to the discussion of the nature of the
growth law. In Fig. 2, the time dependence of the average
domain size, as calculated from the various definitions, is
shown. Notice the linear dependence ofRstd at late times
indicating that the growth regime should be viscous, in
agreement with Siggia’s prediction [4]. However, when
plotting the data in a double-logarithmic plot, we find
that the late-time growth exponent is more consistent with
2y3, possibly indicating that the observed growth regime
is inertial, as suggested by the MD simulation of Ma
et al. [10]. It should be pointed out, however, that the
growth law Rstd ­ Rs0d 1 at investigated over a finite
time range may show a growth exponent which is smaller
than one due to a nonnegligible value ofRs0d and possible
other nonalgebraic dependences.

FIG. 1. Scaled pair-correlation functiongsxd versus the scaled
distancex ­ ryRstd for a quench atkBT ­ 2e. The data
shown range fromt ­ 80t to 220t. The inset shows the time
evolution of the correlation function fromt ­ 20t to 220t in
steps of20t.
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FIG. 2. The average domain size as a function of time for
a quench atkBT ­ 2e. RGstd is the first zero of the pair-
correlation function, andR1std is calculated from the first
moment of the structure factor. The two dots indicate the
typical size of the error bars in the numerical data, and the
two dotted lines are straight lines.

In order to determine the true asymptotic growth law,
we have to consider the relevant dynamical model and
analyze our results in light of its implications. The
dynamics of phase separation in fluids can be described
by the so-called model H [14], corresponding to a
generalized Cahn-Hilliard equation coupled to the Navier-
Stokes equation. The appropriate dynamical equations
can then be written as follows:

≠fsr, td
≠t

1 v ? =fsr, td ­ M=2 dF hfj
dfsr, td

, (2)

r

∑
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≠t
1 fvsr, td ? =gvsr, td

∏
­ h=2vsr, td

2 =psr, td 2 fsr, td

3 =
dF hfj
dfsr, td

, (3)

where fsr, td, vsr, td, and psr, td are the local order
parameter, the velocity field, and the pressure field,
respectively. The constantsM, r, and h correspond to
the order parameter mobility, the fluid density, and the
shear viscosity, respectively.F is the usualf4 free
energy functional [1]. The difference between Eq. (2)
and the usual Cahn-Hilliard equation is the presence of
the second term on the left-hand side, which accounts for
the transport of the order parameter by the velocity field.
Equation (3) is different from the usual Navier-Stokes
equation by the presence of the additional force acting
on the fluid due to gradients in the chemical potential.

The set of equations (2) and (3) is very difficult to
solve, but one can obtain various growth regimes by
means of simple dimensional analysis. Here we will limit
ourselves to three dimensions. At relatively early times,
but late enough so that the domains are well defined and
much larger than the interfacial width, the velocity field is

decoupled from the order parameter leading to the usual
Lifshitz-Slyozov growth law usually observed in alloys
Rstd , sMgtd1y3, whereg is the interfacial tension [2].
This regime will be referred to as the diffusive regime.
At later times, the coupling betweenf and v cannot be
neglected but the inertial term in Eq. (3), can be neglected
so thatv becomes slaved byf. One thus obtains the
following growth law, Rstd , sgtyhd, which will be
associated with a viscous regime and has been predicted
by Siggia [4] as a consequence of a necking-down
instability of the tubular (interconnected) domain structure
due to the transport of material from the necks to the
bulges. This regime has been observed in several simple
binary fluids and binary homopolymer blends [15,16] as
well as in numerical simulations [8,9]. At even later
times, the inertial term in the Navier-Stokes equation can
no longer be neglected, and one finds the growth law of
the inertial regimeRstd , sgyrd1y3t2y3 [5]. The two last
regimes can be observed only for interconnected domain
structures. For dilute binary solutions, the domains are
dropletlike, and the domain growth is essentially due to
their coalescence leading to a growth lawRstd , t1y3, but
with a prefactor which is larger than that in the diffusive
regime. The inertial regime has not been observed experi-
mentally, but it has been observed in several numerical
simulations in two dimensions [9,17,18]. Introducing two
time scales,ty ­ sgyhdt and ti ­ sgyrd1y3t2y3 for the
viscous regime and the inertial regime, respectively, the
ty dependence (ti dependence) ofRstd during the viscous
(inertial) regime must be linear and independent of the
quench depth, except maybe for interference withRs0d.

We have therefore calculated, by molecular dynam-
ics simulations, the interfacial tensiong and the shear
viscosity h for the various quench temperatures consid-
ered in the present study. We obtain a shear viscos-
ity which is practically independent of temperature and
equal toh ­ 1.65. However, the interfacial tension is
found to decrease with temperature, almost linearly from
s1.85 6 0.07deys2 for kBT ­ 2e to s0.39 6 0.13deys2

for kBT ­ 4e, since the present model belongs to the
Ising universality class ind ­ 3. In Fig. 3(a), Rstd is
plotted versusty ­ sgtyhd, and in Fig. 3(b),Rstd is plot-
ted versusti ­ sgyrd1y3t2y3 for all quench temperatures.
Although the data are almost linear withti for all tem-
peratures, the slope ofRstd versusti depends strongly on
T , whereas the slope ofRstd versusty is independent of
temperature. This, therefore, strongly indicates that the
growth regime found in this system cannot be inertial, in
contrast to the prediction by Maet al. [10], but in agree-
ment with the other numerical studies and experiments.
In our simulations, dynamical scaling is observed start-
ing from t ­ 80t at the lowest quench temperatures. At
higher temperatures, the scaling regime is delayed to later
times. This is to be contrasted to the study of Maet al.,
in which it was found that the scaling regime starts as
early as20t [10]. Of course, the fact that we did not
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FIG. 3. The average domain size as a function ofty ­
sgyhdt. Data lines from bottom to top correspond tokBT ­
2e, 3e, 3.5e, 3.75e, and 4e, respectively. For the sake of
clarity, data have been shifted vertically upward. (b) The
average domain size as a function ofti ­ sgyrd1y3t2y3. Data
from top to bottom correspond tokBT ­ 2e, 3e, 3.5e, 3.75e,
and4e, respectively.

observe an inertial regime does not disprove the presence
of this regime at even later times, as predicted by the scal-
ing analysis. The inertial regime has been observed in
previous numerical studies in two dimensions [11,17], and
in a recent model H simulation in three dimensions [11].
In order to detect such a regime, we must simulate much
larger systems.

Another reason, making us even more confident that the
dynamical regime found in the present study is viscous, is
the value of the prefactor of the growth law in terms of
ty. Siggia predicted that this prefactor is 0.6, whereas San
Miguel, Grant, and Gunton [6] find that it should be 0.25
from a linear stability analysis of the tubular structure.
However, a detailed experimental study by Guenounet al.
finds that the prefactor is0.138 6 0.006 [16]. In our
simulation we find the prefactor to be0.11 6 0.01, which
is very close to the experimental value of Guenounet al.,
but disagrees with the two theoretical predictions which,
however, are quite crude in nature. The difference
between the value of our prefactor and that of Guenoun
et al. might be due to the finite size of our systems,
leading to a cutoff of the long-range hydrodynamic
modes. Indeed, one expects that this prefactor decreases
linearly with 1yL from its thermodynamics-limit value
[19]. Moreover, we found that the prefactor ofty is
independent of volume fraction for quenches at volume
fractions around 0.5. However, for volume fractions
smaller than about 0.3, we found a growth exponent
consistent with 1y3. We note that recently Nikolayev
et al. have predicted that a sharp transition from the
viscous growth to coalescence-dominated growth occurs
at a volume fraction around 0.3 [20].

In conclusion, we have performed a large-scale sys-
tematic molecular dynamics study of the phase separa-

tion dynamics in binary fluids in three dimensions which
faithfully accounts for hydrodynamic modes. During late
times, the system reaches a dynamical scaling regime dur-
ing which the average domain size grows linearly with
time in agreement with Siggia’s prediction, previous nu-
merical integration of model H, and lattice-Boltzmann
simulations. The discrepancy with a previous molecular
dynamics study has been clarified.
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