7 research outputs found

    Kidney function and markers of renal damage after renal denervation. Does method of measurement matter? The Reshape CV-Risk Study

    Get PDF
    Data suggest that renal denervation (RDN) in treatment-resistant hypertension (TRHT) is safe in terms of renal function. However, most studies report kidney function as creatinine-based estimated glomerular filtration rate (eGFR), which may be biased by non-renal factors. Damage markers other than albuminuria have never been evaluated after RDN. In this non-randomized RDN trial, we studied changes in kidney function, assessed as measured GFR (mGFR) and various GFR estimates, six months and two years after RDN. We also examined changes in albuminuria and a biomarker of tubular dysfunction. Adult non-diabetic patients with TRHT and eGFR ≥45 ml/min/1.73 m2 were recruited from hypertension clinics. Before bilateral RDN, mGFR was measured by iohexol clearance. We estimated eGFR from serum creatinine and cystatin C (eGFRcrea, eGFRcys, and eGFRcreacys), and albumin-creatinine ratio (ACR) and N-acetyl-β-D-glucosaminidase (NAG)-creatinine ratio (NAG-CR) were measured in spot urines. All measurements were repeated after six and twenty-four months. Twenty patients, mean age 54 (±9) years and baseline mGFR 83 (±20) ml/min/1.73 m2 underwent RDN. After six months, mGFR fell, eGFRcrea remained unchanged, whereas eGFRcys and eGFRcreacys increased. At 2 years’ follow-up, eGFRcreacys was significantly lower than at baseline. mGFR was 78 (±28) ml/min/1.73 m2. Change in ambulatory systolic BP predicted change in eGFRcrea. Urinary NAG-CR, but not ACR, increased during follow-up. Different GFR assessments gave diverging results after RDN. Therefore, care should be taken to method when evaluating kidney function after RDN. Increases in a tubular dysfunction biomarker suggest that kidney damage may occur. Long-term renal follow-up is needed after RDN

    Kidney function and markers of renal damage after renal denervation. Does method of measurement matter? The Reshape CV‐Risk Study

    No full text
    Data suggest that renal denervation (RDN) in treatment-resistant hypertension (TRHT) is safe in terms of renal function. However, most studies report kidney function as creatinine-based estimated glomerular filtration rate (eGFR), which may be biased by non-renal factors. Damage markers other than albuminuria have never been evaluated after RDN. In this non-randomized RDN trial, we studied changes in kidney function, assessed as measured GFR (mGFR) and various GFR estimates, six months and two years after RDN. We also examined changes in albuminuria and a biomarker of tubular dysfunction. Adult non-diabetic patients with TRHT and eGFR ≥45 ml/min/1.73 m2 were recruited from hypertension clinics. Before bilateral RDN, mGFR was measured by iohexol clearance. We estimated eGFR from serum creatinine and cystatin C (eGFRcrea, eGFRcys, and eGFRcreacys), and albumin-creatinine ratio (ACR) and N-acetyl-β-D-glucosaminidase (NAG)-creatinine ratio (NAG-CR) were measured in spot urines. All measurements were repeated after six and twenty-four months. Twenty patients, mean age 54 (±9) years and baseline mGFR 83 (±20) ml/min/1.73 m2 underwent RDN. After six months, mGFR fell, eGFRcrea remained unchanged, whereas eGFRcys and eGFRcreacys increased. At 2 years’ follow-up, eGFRcreacys was significantly lower than at baseline. mGFR was 78 (±28) ml/min/1.73 m2. Change in ambulatory systolic BP predicted change in eGFRcrea. Urinary NAG-CR, but not ACR, increased during follow-up. Different GFR assessments gave diverging results after RDN. Therefore, care should be taken to method when evaluating kidney function after RDN. Increases in a tubular dysfunction biomarker suggest that kidney damage may occur. Long-term renal follow-up is needed after RDN

    Human concentrations of uric acid scavenges adaptive and maladaptive reactive oxygen species in isolated rat hearts subjected to ischemic stress

    Get PDF
    Uric acid is a purine degradation product but also an important antioxidant and ROS scavenger. Experimental settings that mimic myocardial ischemia-reperfusion have not included uric acid despite that it is always present in human extracellular fluid and plasma. We hypothesized that uric acid has an important role in myocardial ROS scavenging. Here, we tested the cardiac response to uric acid on infarct size following ischemia-reperfusion with and without exacerbated oxidative stress due to acute pressure overload and during preconditioning. We also examined mitochondrial respiration and ROS-induced mitochondrial permeability transition pore opening. Under exacerbated ROS stress induced by high pressure perfusion, uric acid lowered oxidative stress and reduced infarct size. In contrast, uric acid blocked cardioprotection induced by ischemic preconditioning. However, this effect was reversed by probenecid, an inhibitor of cellular uptake of uric acid. In accordance, in intact cardiomyocytes, extracellular uric acid reduced the susceptibility of mitochondria towards opening of the permeability transition pore, suggesting that uric acid may prevent ischemia-reperfusion injury due to scavenging of maladaptive ROS. Moreover, as uric acid also scavenges also adaptive ROS, this may interfere with preconditioning. Altogether, uric acid might be a confounder when translating preclinical experimental results into clinical treatment.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Uric acid is a risk factor for ischemic stroke and all-cause mortality in the general population: a gender specific analysis from The Tromsø Study

    Get PDF
    Background: The role of serum uric acid as an independent predictor of cardiovascular disease and death is uncertain in the general population. Adjustments for additional cardiovascular risk factors have not been consistent. We examined the association of serum uric acid with all-cause mortality, ischemic stroke and myocardial infarction in a prospective population based study, with several traditional and non-traditional risk factors for cardiovascular disease included in the model. Methods: A population-based prospective cohort study was performed among 2696 men and 3004 women. Endpoints were all-cause mortality after 15 years, and fatal or non-fatal myocardial infarction (MI) and ischemic stroke after 12 years. Results: 1433 deaths, 659 MIs and 430 ischemic strokes occurred during follow-up. Fully adjusted Cox regression analyses showed that per 1 SD (87 μmol/L) increase in serum uric acid level, the risk of all-cause mortality increased in both genders (hazard ratios, HR men; 1.11, 95% CI 1.02-1.20, women; 1.16, 1.05-1.29). HRs and 95% CI for stroke were 1.31, 1.14-1.50 in men, 1.13, 0.94-1.36 in women, and 1.22 (1.09, 1.35) in the overall population. No independent associations were observed with MI. Conclusion: Serum uric acid was associated with all-cause mortality in men and women, even after adjustment for blood pressure, estimated GFR, urinary albumin/creatinine ratio, drug intake and traditional cardiovascular risk factors. After the same adjustments, serum uric acid was associated with 31% increased risk of stroke in men
    corecore