9,410 research outputs found
Principles of Discrete Time Mechanics: IV. The Dirac Equation, Particles and Oscillons
We apply the principles of discrete time mechanics discussed in earlier
papers to the first and second quantised Dirac equation. We use the Schwinger
action principle to find the anticommutation relations of the Dirac field and
of the particle creation operators in the theory. We find new solutions to the
discrete time Dirac equation, referred to as oscillons on account of their
extraordinary behaviour. Their principal characteristic is that they oscillate
with a period twice that of the fundamental time interval T of our theory.
Although these solutions can be associated with definite charge, linear
momentum and spin, such objects should not be observable as particles in the
continuous time limit. We find that for non-zero T they correspond to states
with negative squared norm in Hilbert space. However they are an integral part
of the discrete time Dirac field and should play a role in particle
interactions analogous to the role of longitudinal photons in conventional
quantum electrodynamics.Comment: 27 pages LateX; published versio
Controllable optical phase shift over one radian from a single isolated atom
Fundamental optics such as lenses and prisms work by applying phase shifts to
incoming light via the refractive index. In these macroscopic devices, many
particles each contribute a miniscule phase shift, working together to impose a
total phase shift of many radians. In principle, even a single isolated
particle can apply a radian-level phase shift, but observing this phenomenon
has proven challenging. We have used a single trapped atomic ion to induce and
measure a large optical phase shift of radians in light scattered
by the atom. Spatial interferometry between the scattered light and unscattered
illumination light enables us to isolate the phase shift in the scattered
component. The phase shift achieves the maximum value allowed by atomic theory
over the accessible range of laser frequencies, validating the microscopic
model that underpins the macroscopic phenomenon of the refractive index.
Single-atom phase shifts of this magnitude open up new quantum information
protocols, including long-range quantum phase-shift-keying cryptography [1,2]
and quantum nondemolition measurement [3,4].Comment: submitte
ECONOMIC IMPACTS OF THE COLLEGE OF VETERINARY MEDICINE
Colleges of veterinary medicine are often asked to provide evidence of the economic impacts of their activities. This report presents methods for evaluating a veterinary college and applies them to the Virginia-Maryland Regional College of Veterinary Medicine. Short-run impacts on income and employment are assessed as well as the long-run benefits of the research, extension, teaching, and clinical services of the college.Public Economics,
Evidence for polar jets as precursors of polar plume formation
Observations from the Hinode/XRT telescope and STEREO/SECCHI/EUVI are
utilized to study polar coronal jets and plumes. The study focuses on the
temporal evolution of both structures and their relationship. The data sample,
spanning April 7-8 2007, shows that over 90% of the 28 observed jet events are
associated with polar plumes. EUV images (STEREO/SECCHI) show plume haze rising
from the location of approximately 70% of the polar X-ray (Hinode/XRT) and EUV
jets, with the plume haze appearing minutes to hours after the jet was
observed. The remaining jets occurred in areas where plume material previously
existed causing a brightness enhancement of the latter after the jet event.
Short-lived, jet-like events and small transient bright points are seen (one at
a time) at different locations within the base of pre-existing long-lived
plumes. X-ray images also show instances (at least two events) of
collimated-thin jets rapidly evolving into significantly wider plume-like
structures that are followed by the delayed appearance of plume haze in the
EUV. These observations provide evidence that X-ray jets are precursors of
polar plumes, and in some cases cause brightenings of plumes. Possible
mechanisms to explain the observed jet and plume relationship are discussed.Comment: 10 pages, 4 figures, accepted as APJ Lette
Comment on ``Superconducting PrBa_2Cu_3O_x''
Recently, Zou et al. (Phys. Rev. Lett. 80, 1074, 1998) reported the
observation of bulk superconductivity (SC) for a PrBa_2Cu_3O_x (Pr123) single
crystal grown by the traveling-solvent floating zone (TSFZ) method. The aim of
this Comment is to show the inconsistency of the value of effective magnetic
moment \mu_{eff} reported by Zou et al. (2.92\mu_B) with their magnetic
susceptibility data. The estimation made directly from their data points gives
a considerably smaller value of \mu_{eff}=2.09\mu_B. At the same time the
values of mu_{eff}=2.9\mu_B and 3.1\mu_B were obtained for our Pr123 single
crystals grown by flux method for H||ab-plane and H||c-axis, respectively. This
suggests that Pr occupies only about a half of the RE sites in TSFZ crystal.
The other half of the RE sites is occupied most probably by the nonmagnetic Ba.
Noteworthy, SC with T_c=43 K was observed earlier for
Pr_{0.5}Ca_{0.5}Ba_2Cu_3O_{7-y} thin films. Ba^{2+} has a larger ionic radius
than Pr^{3+} and so the substitution of Ba for Pr could give a natural
explanation not only for the SC in TSFZ Pr123 but also for the elongation of
the distance between the CuO_2 planes observed by Zou et al.Comment: Slightly extended version of Comment accepted to Phys. Rev. Lett.
(v.81, N24, 1998), tentatevely to be publ. 14Dec98. 1 page, REVTex; 1 EPS fi
The X-ray properties of the magnetic cataclysmic variable UUColumbae
Aims. XMM-Newton observations to determine for the first time the broad-band X-ray properties of the faint, high galactic latitude intermediate polar UUCol are presented.
Methods. We performed X-ray timing analysis in different energy ranges of the EPIC cameras, which reveals the dominance of the 863 s white dwarf rotational period. The spin pulse is strongly energy dependent. Weak variabilities at the beat 935 s and at the 3.5 h orbital periods are also observed, but the orbital modulation is detected only below 0.5 keV. Simultaneous UV and optical photometry shows that the spin pulse is anti-phased with respect to the hard X-rays. Analysis of the EPIC and RGS spectra reveals
the complexity of the X-ray emission, which is composed of a soft 50 eV blackâbody component and two optically thin emission components at 0.2 keV and 11 keV strongly absorbed by dense material with an equivalent hydrogen column density of 1023 cmâ2 that partially (50%) covers the X-ray source.
Results. The complex X-ray and UV/optical temporal behaviour indicates that accretion occurs predominantly (âŒ80%) via a disc with a partial contribution (âŒ20%) directly from the stream. The main accreting pole dominates at high energies whilst the secondary pole mainly contributes in the soft X-rays and at lower energies. The bolometric flux ratio of the soft-to-hard X-ray emissions is found to be consistent with the prediction of the standard accretion shock model. We find the white dwarf in UUCol accretes at a low rate and possesses a low magnetic moment. It is therefore unlikely that UUCol will evolve into a moderate field strength polar, so that the soft X-ray intermediate polars still remain an enigmatic small group of magnetic cataclysmic variables
Energy Requirement of Control: Comments on Szilard's Engine and Maxwell's Demon
In mathematical physical analyses of Szilard's engine and Maxwell's demon, a
general assumption (explicit or implicit) is that one can neglect the energy
needed for relocating the piston in Szilard's engine and for driving the trap
door in Maxwell's demon. If this basic assumption is wrong, then the
conclusions of a vast literature on the implications of the Second Law of
Thermodynamics and of Landauer's erasure theorem are incorrect too. Our
analyses of the fundamental information physical aspects of various type of
control within Szilard's engine and Maxwell's demon indicate that the entropy
production due to the necessary generation of information yield much greater
energy dissipation than the energy Szilard's engine is able to produce even if
all sources of dissipation in the rest of these demons (due to measurement,
decision, memory, etc) are neglected.Comment: New, simpler and more fundamental approach utilizing the physical
meaning of control-information and the related entropy production. Criticism
of recent experiments adde
Measurement of focusing properties for high numerical aperture optics using an automated submicron beamprofiler
The focusing properties of three aspheric lenses with numerical aperture (NA)
between 0.53 and 0.68 were directly measured using an interferometrically
referenced scanning knife-edge beam profiler with sub-micron resolution. The
results obtained for two of the three lenses tested were in agreement with
paraxial gaussian beam theory. It was also found that the highest NA aspheric
lens which was designed for 830nm was not diffraction limited at 633nm. This
process was automated using motorized translation stages and provides a direct
method for testing the design specifications of high numerical aperture optics.Comment: 6 pages 4 figure
The Helioseismic and Magnetic Imager (HMI) Vector Magnetic Field Pipeline: Optimization of the Spectral Line Inversion Code
The Very Fast Inversion of the Stokes Vector (VFISV) is a Milne-Eddington
spectral line inversion code used to determine the magnetic and thermodynamic
parameters of the solar photosphere from observations of the Stokes vector in
the 6173 A Fe I line by the Helioseismic and Magnetic Imager (HMI) onboard the
Solar Dynamics Observatory (SDO). We report on the modifications made to the
original VFISV inversion code in order to optimize its operation within the HMI
data pipeline and provide the smoothest solution in active regions. The changes
either sped up the computation or reduced the frequency with which the
algorithm failed to converge to a satisfactory solution. Additionally, coding
bugs which were detected and fixed in the original VFISV release, are reported
here.Comment: Accepted for publication in Solar Physic
- âŠ