313 research outputs found

    Experimental studies and nuclear model calculations on (p,xn) and (p,pxn) reactions on 85Rb from their threshold up to 100 MeV

    Get PDF
    Excitation functions were measured by the stacked-foil technique for the reactions Rb-85(p, pxn)Rb-89m,Rb-g83,Rb-82m.81 from their thresholds up to 100MeV. Nuclear model calculations were performed using the code ALICE-IPPE both on (p, xn) reactions reported earlier and (p, pxn) reactions described here. The experimental excitation curves and the results of nuclear model calculations were found to be qualitatively in agreement. With the exception of the (p, n) reaction above 40MeV, the theory appears to reproduce all the experimental data within deviations of about 50%. The cross section ratios for the isomeric pairs Sr-85m,Sr-g and Rb-84m,Rb-g are discussed qualitatively in terms of the spins of the states involved and the increasing projectile energy

    A phase II study of raltitrexed and gemcitabine in patients with advanced pancreatic carcinoma

    Get PDF
    Advanced adenocarcinoma of the pancreas has a very poor prognosis. The aim of this study was to assess the efficacy and tolerability of a combination of the chemotherapeutic agents gemcitabine and raltitrexed. Chemonaïve patients with advanced adenocarcinoma of the pancreas were treated with a combination of raltitrexed (3.5 mg m−2 on day 1 of a 21-day treatment cycle) and gemcitabine (800 mg m−2 intravenously (i.v.) on days 1 and 8 of a 21-day cycle). Between April 2000 and February 2003, 27 patients were enrolled onto the study. The mean duration of treatment was 11 weeks. Four of 27 patients experienced at least one episode of grade 3 or 4 neutropenia. One patient with grade 4 neutropenia died due to sepsis. Four of 27 patients experienced grade 4 diarrhoea. There was one partial remission (4%) and 12 patients experienced disease stabilisation (44%). The 6-month and 1-year survival rates were 37 and 11%, respectively. Symptomatic benefit occurred in seven (26%) patients. We conclude that a combination of raltitrexed and gemcitabine, using the schedule and doses in this study, cannot be recommended for patients with advanced pancreatic cancer

    Assumptions behind grammatical approaches to code-switching: when the blueprint is a red herring

    Get PDF
    Many of the so-called ‘grammars’ of code-switching are based on various underlying assumptions, e.g. that informal speech can be adequately or appropriately described in terms of ‘‘grammar’’; that deep, rather than surface, structures are involved in code-switching; that one ‘language’ is the ‘base’ or ‘matrix’; and that constraints derived from existing data are universal and predictive. We question these assumptions on several grounds. First, ‘grammar’ is arguably distinct from the processes driving speech production. Second, the role of grammar is mediated by the variable, poly-idiolectal repertoires of bilingual speakers. Third, in many instances of CS the notion of a ‘base’ system is either irrelevant, or fails to explain the facts. Fourth, sociolinguistic factors frequently override ‘grammatical’ factors, as evidence from the same language pairs in different settings has shown. No principles proposed to date account for all the facts, and it seems unlikely that ‘grammar’, as conventionally conceived, can provide definitive answers. We conclude that rather than seeking universal, predictive grammatical rules, research on CS should focus on the variability of bilingual grammars

    Investigating High-Energy Proton-Induced Reactions on Spherical Nuclei: Implications for the Pre-Equilibrium Exciton Model

    Full text link
    A number of accelerator-based isotope production facilities utilize 100- to 200-MeV proton beams due to the high production rates enabled by high-intensity beam capabilities and the greater diversity of isotope production brought on by the long range of high-energy protons. However, nuclear reaction modeling at these energies can be challenging because of the interplay between different reaction modes and a lack of existing guiding cross section data. A Tri-lab collaboration has been formed among the Lawrence Berkeley, Los Alamos, and Brookhaven National Laboratories to address these complexities by characterizing charged-particle nuclear reactions relevant to the production of established and novel radioisotopes. In the inaugural collaboration experiments, stacked-targets of niobium foils were irradiated at the Brookhaven Linac Isotope Producer (Ep_p=200 MeV) and the Los Alamos Isotope Production Facility (Ep_p=100 MeV) to measure 93^{93}Nb(p,x) cross sections between 50 and 200 MeV. The measured cross-section results were compared with literature data as well as the default calculations of the nuclear model codes TALYS, CoH, EMPIRE, and ALICE. We developed a standardized procedure that determines the reaction model parameters that best reproduce the most prominent reaction channels in a physically justifiable manner. The primary focus of the procedure was to determine the best parametrization for the pre-equilibrium two-component exciton model. This modeling study revealed a trend toward a relative decrease for internal transition rates at intermediate proton energies (Ep_p=20-60 MeV) in the current exciton model as compared to the default values. The results of this work are instrumental for the planning, execution, and analysis essential to isotope production.Comment: 37 pages, 62 figures. Revised version, published in Physical Review
    • …
    corecore