176 research outputs found

    Proton Beam Energy Characterization

    Get PDF
    Introduction The Los Alamos Isotope Production Facility (IPF) is actively engaged in the development of isotope production technologies that can utilize its 100 MeV proton beam. Characterization of the proton beam energy and current is vital for optimizing isotope production and accurately conducting research at the IPF. Motivation In order to monitor beam intensity during research irradiations, aluminum foils are interspersed in experimental stacks. A theoretical yield of 22Na from 27Al(p,x)22Na reactions is cal-culated using MCNP6 (Monte Carlo N-Particle), TRIM (Transport of Ions in Matter), and Andersen & Ziegler (A&Z) [1] computational models. For some recent experiments, experimentally measured activities did not match computational predictions. This discrepancy motivated further experimental investigations including a direct time-of-flight measurement of the proton beam energy upstream of the target stack. The Isotope Production Program now tracks the beam energy and current by a complement of experimental and computational methods described below. Material and Methods A stacked-foil activation technique, utilizing aluminum monitor foils [2] in conjunction with a direct time-of-flight measurement helps define the current and energy of the proton beam. Theoretical yields of 22Na activity generated in the Al monitor foils are compared with experimental measurements. Additionally, MCNP, TRIM, and A&Z computational simulations are compared with one another and with experimental data. Experimental Approach Thin foils (0.254mm) of high purity aluminum are encapsulated in kapton tape and stacked with Tb foils in between aluminum degraders. Following irradiation, the Al foils are assayed using γ-spectroscopy on calibrated HPGe detectors in the Chemistry Division countroom at LANL. We use the well-characterized 27Al(p,x)22Na energy dependent production cross section [3] to calculate a predicted yield of 22Na in each foil. Details of the experimental activity determination and associated uncertainties have been addressed previously [4]. The nominally stated beam parameters are 100 MeV and 100–120 nA for the foil stack irradiation experiments. Time-of-flight measurements performed in the month of January 2014 revealed beam energy of 99.1 ± 0.5 MeV. Computational Simulations Andersen & Zeigler (A&Z) is a deterministic method and also the simplest of the three com-putational methods considered. While the mean energy degradation can be calculated using the A&Z formalism, the beam current attenuation cannot. Consequentially, A&Z will also lack the ability to account for a broadening in the beam energy that a stochastic method affords. Additionally, A&Z does not account for nuclear recoil or contributions from secondary interactions. TRIM uses a stochastic based method to calculate the stopping range of incident particles applying Bethe-Block formalisms. TRIM, like A&Z, does not include contributions from nuclear recoil or contributions from secondary interactions. Computationally, TRIM is a very expensive code to run. TRIM is able to calculate a broadening in the energy of the beam; however, beam attenuation predictions are much less reliable. TRIM determines the overall beam attenuation in the whole stack to be less than one percent, whereas 7–10 % is expected. MCNP6 is arguably the most sophisticated approach to modeling the physics of the experiment. It also uses a stochastic procedure for calculation, adopting the Cascade-Exciton Model (CEM03) to track particles. The physics card is enabled in the MCNP input to track light ion recoils. Contributions from neutron and proton secondary particle interactions are included, although their contribution is minimal. For both MCNP and TRIM, the proton beam is simulated as a pencil beam. To find the current, an F4 volumetric tally of proton flux from MCNP simulation is matched to the experimental current for the first foil in the stack. Subsequent foil currents are calculated relative to the first foil based on MCNP predictions for beam attenuation. The equation used for calculating the current from the experi-mental activity is [5]: where: is the cross section for the process, [mbarns] is the atomic mass of the target [amu] is the is the number of product nuclei pre-sent at End-of-Bombardment is the average beam current, [μA] is the density of the target material, [g/cc] is the target thickness, [cm] is the decay constant, [s−1] is the irradiation time, [s] For each foil in the experimental stack, we also have a statistically driven broadening of the incident energy. The beam energy is modeled as a Gaussian distribution, with the tallies for each energy bin determining the parameters of the fit. TABLE 1 and FIG. 3 summarize the mean energy and standard deviation of the energy for each aluminum monitor foil. To address the energy distribution, we calculate an effective or weighted cross-section. It is especially important to account for energy broadening in regions where the associated excitation function varies rapidly. In the excitation function, we see a strong variation in the energy range from 30–65 MeV, the energy region cov-ered by the last 3 foils in the stack. Cross section weighting also accounts for the mean energy variation within each foil. The excitation function will overlay the Gaussian shaped flux distribution, giving rise to a lateral distribution where incrementally weighted values of the cross section are determined by the flux tally of the corresponding energy bin. With the effective cross section and the current at each of the foils, it is straight-forward to calculate the number of 22Na atoms created and the activity of each foil using the previously stated equation. Results and Conclusion The general trend in the amount of activity produced follows the shape of the excitation func-tion for the 27Al(p,x)22Na reaction. Small shifts in the incident energy upstream trickle down to produce much more pronounced shifts in the energy range of foils towards the back of the foil stack. The characteristic “rolling over” of the activity seen in the experimental foils indicates that the 6th foil must be in the energy region below 45 MeV, where the peak of the excitation function occurs. Conservatively, computational simulations are able to accurately determine the proton beam’s energy for an energy range from 100 to 50 MeV. As the beam degrades below 50 MeV, computa-tional simulations diverge from experimentally observed energies by over-predicting the energy. This observation has been noted in past studies [6,7] that compare the stacked foil technique with stopping-power based calculations. A complement of experimental and computational predictions allows for energy determinations at several points within target stacks. While this study focuses on an Al-Tb foil stack, the analysis of a similar Al-Th foil stack resulted in the same conclusions. Although we do not have a concurrent time-of-flight energy measurement at the time of the foil stack experiments, it is reasonable to assume that the energy at the time of the stacked foil experiments was also lower than the assumed energy of 100 MeV. Computational simulations developed in this work firmly support this assumption. Various computational models are able to predict with good agreement the energy as a function of depth for complex foil stack geometries. Their predictions diverge as the beam energy distribution broadens and statistical uncertainties propagate. A careful inspection of the codes reveals that these discrepancies likely originate from minute differences between the cross sections and stopping power tables that MCNP and TRIM/A&Z use respectively

    A phase II study of raltitrexed and gemcitabine in patients with advanced pancreatic carcinoma

    Get PDF
    Advanced adenocarcinoma of the pancreas has a very poor prognosis. The aim of this study was to assess the efficacy and tolerability of a combination of the chemotherapeutic agents gemcitabine and raltitrexed. Chemonaïve patients with advanced adenocarcinoma of the pancreas were treated with a combination of raltitrexed (3.5 mg m−2 on day 1 of a 21-day treatment cycle) and gemcitabine (800 mg m−2 intravenously (i.v.) on days 1 and 8 of a 21-day cycle). Between April 2000 and February 2003, 27 patients were enrolled onto the study. The mean duration of treatment was 11 weeks. Four of 27 patients experienced at least one episode of grade 3 or 4 neutropenia. One patient with grade 4 neutropenia died due to sepsis. Four of 27 patients experienced grade 4 diarrhoea. There was one partial remission (4%) and 12 patients experienced disease stabilisation (44%). The 6-month and 1-year survival rates were 37 and 11%, respectively. Symptomatic benefit occurred in seven (26%) patients. We conclude that a combination of raltitrexed and gemcitabine, using the schedule and doses in this study, cannot be recommended for patients with advanced pancreatic cancer

    57Co Production using RbCl/RbCl/58Ni Target Stacks at the Los Alamos Isotope Production Facility: LA-UR-14-22122

    Get PDF
    Introduction The Los Alamos Isotope Production Program commonly irradiates target stacks consisting of high, medium and low-energy targets in the “A-”, “B-”, and “C-slots”, respectively, with a 100MeV proton beam. The Program has recently considered the production of 57Co (t1/2 = 271.74 d, 100% EC) from 58Ni using the low-energy posi-tion of the Isotope Production Facility, down-stream of two RbCl salt targets. Initial MCNPX/ CINDER’90 studies predicted 57Co radioisotopic purities >90% depending on time allotted for decay. But these studies do not account for broadening of the proton beam’s energy distribution caused by density changes in molten, potentially boiling RbCl targets upstream of the 58Ni (see e.g., [1]). During a typical production with 230 µA average proton intensity, the RbCl targets’ temperature is expected to produce beam energy changes of several MeV and commensurate effects on the yield and purity of any radioisotope irradiated in the low-energy posi-tion of the target stack. An experiment was designed to investigate both the potential for 57Co’s large-scale production and the 2-dimensional proton beam energy distribution. Material and Methods Two aluminum targets holders were fabricated to each contain 31 58Ni discs (99.48%, Isoflex, CA), 4.76 mm (Φ) x 0.127 mm (thickness). Each foil was indexed with a unique cut pattern by EDM with a 0.254 mm brass wire to allow their position in the target to be tracked through hot cell disassembly and assay (see FIG. 1). Brass residue from EDM was removed with HNO3/HCl solution. The holders’ front windows were 2.87 and 1.37 mm thick, corresponding to predicted average incident energies of 17.9 and 24.8 MeV on the Ni [2]. Each target was irradiated with protons for 1 h with an average beam current of 218 ± 3 µA to ensure an upstream RbCl target temperature and density that would mimic routine production. Following irradiation, targets were disassembled and each disc was assayed by HPGe γ-spectroscopy. Residuals 56Co (t1/2 = 77.2 d, 100% EC) and 57Co have inversely varying measured nuclear formation cross sections between approximately 15 and 40 MeV. Results and Conclusion Distributions of 56,57,58,60Co were tracked as described in both irradiated targets. The distribution of activities matched expectations, with radioisotopes produced by proton interactions with the 58Ni target (56Co and 57Co) concentrated in the area struck by IPF’s rastered, annulus-shaped proton beam, and the distribution of radioisotopes produced by neutron-induced reactions (58Co and 60Co) relatively uniform across all irradiated foils. The potential range of such temperature variations predicted by thermal modeling (approx. ± 200 °C) corre-sponds to a density variation of nearly 0.2 g.cm−3, and a change in the average energy of protons incident on the low-energy “C-slot” of approximately 5 MeV, well-matched to the indi-rectly measured energy variation plotted in FIG. 3. No energy distribution in the plane per-pendicular to the beam axis has previously been assumed in the design of IPF targets. The effective incident energy measured by yields of 57Co and 56Co is, however, almost 5 MeV higher than those predicted using Anderson and Ziegler’s well-known formalism [2]. This discrepancy is supported by previous reports [3] and likely exacerbated compared to these reports by the large magnitude of energy degradation (from 100 MeV down to 30 MeV) in the IPF target stack. For more detailed discussion, refer to Marus et al.’s abstract, also reported at this meeting. While the experiments reported do confirm the potential for many Ci-scale yields of 57Co from months-long irradiations at the IPF, the level radioisotopic impurities 56Co and 58Co are concerning. Commercial radioisotope producers using U-150 (23 MeV) and RIC-14 (14 MeV) cyclotrons in Obninsk, Russia specify 56/58Co activities at levels <0.2% of available 57C

    Illness perceptions and quality of life in patients with non-small-cell lung cancer

    Get PDF
    __Purpose:__ Examine illness perceptions, functional health and quality of life of lung cancer patients throughout chemotherapy treatment. __Patients and Methods:__ Longitudinal design with baseline measure 12 days after the first chemotherapy and follow-up measure 3 months later, where illness perceptions (BIPQ), functional health, and quality of life (EORTC QLQ-C-30) were measured. A total of 21 patients with non-small-cell lung cancer took part. Non-parametric testing was performed given the pilot nature of the study and the associated relatively small sample size. __Results:__ Small to medium changes in illness perceptions and functional health between the two measurement points were detected, with both becoming more positive. More negative illness perceptions at the beginning of the treatment were associated with less functioning and lower quality of life at both beginning and end of treatment. __Conclusion:__ Addressing illness perceptions seems a clinically relevant approach in improving functioning and quality of life of patients with non-small-cell lung cancer
    corecore