1,223 research outputs found
The First Direct and Enantioselective Cross-Aldol Reaction of Aldehydes
The first enantioselective catalytic direct cross-aldol reaction that employs nonequivalent aldehydes has been accomplished using proline as the reaction catalyst. Structural variation in both the aldol donor (R_1 = Me, n-Bu, Bn, 91 to >99%) and aldol acceptor (R_2 = I-Pr, I-Bu, c-C6H11, Et, Ph, 97â99% ee) are possible while maintaining high reaction efficiency (75â88% yield). Significantly, this new aldol variant allows facile enantioselective access to a broad range of ÎČ-hydroxy aldehydes which are valuable intermediates in polyketide syntheses
Two-Step Synthesis of Carbohydrates by Selective Aldol Reactions
Studies of carbohydrates have been hampered by the lack of chemical strategies for the expeditious construction and coupling of differentially protected monosaccharides. Here, a synthetic route based on aldol coupling of three aldehydes is presented for the de novo production of polyol differentiated hexoses in only two chemical steps. The dimerization of α-oxyaldehydes, catalyzed by l-proline, is then followed by a tandem Mukaiyama aldol addition-cyclization step catalyzed by a Lewis acid. Differentially protected glucose, allose, and mannose stereoisomers can each be selected, in high yield and stereochemical purity, simply by changing the solvent and Lewis acid used. The reaction sequence also efficiently produces ^(13)C-labeled analogs, as well as structural variants such as 2-aminoâ and 2-thioâsubstituted derivatives
The First General Enantioselective Catalytic DielsâAlder Reaction with Simple α,ÎČ-Unsaturated Ketones
The first general approach to enantioselective catalysis of the DielsâAlder reaction with simple ketone dienophiles has been accomplished. The use of iminium catalysis has enabled enantioselective access to a fundamental DielsâAlder reaction variant that has previously been unavailable using chiral Lewis acid catalysis. A new chiral amine catalyst has been developed that allows a variety of monodentate cyclic and acyclic ketones to successfully participate in enantioselective [4 + 2] cycloadditions. A wide spectrum of cyclic and acyclic diene substrates can also be accommodated in this new organocatalytic transformation. A computational model is provided that is in accord with the sense of enantioinduction observed for all reactions conducted during the course of this study
H2A.Z facilitates access of active and repressive complexes to chromatin in embryonic stem cell self-renewal and differentiation.
SummaryChromatin modifications have been implicated in the self-renewal and differentiation of embryonic stem cells (ESCs). However, the function of histone variant H2A.Z in ESCs remains unclear. We show that H2A.Z is highly enriched at promoters and enhancers and is required for both efficient self-renewal and differentiation of murine ESCs. H2A.Z deposition leads to an abnormal nucleosome structure, decreased nucleosome occupancy, and increased chromatin accessibility. In self-renewing ESCs, knockdown of H2A.Z compromises OCT4 binding to its target genes and leads to decreased binding of MLL complexes to active genes and of PRC2 complex to repressed genes. During differentiation of ESCs, inhibition of H2A.Z also compromises RA-induced RARα binding, activation of differentiation markers, and the repression of pluripotency genes. We propose that H2A.Z mediates such contrasting activities by acting as a general facilitator that generates access for a variety of complexes, both activating and repressive
Spectral Function in Mott Insulating Surfaces
We show theoretically the fingerprints of short-range spiral magnetic
correlations in the photoemission spectra of the Mott insulating ground states
realized in the triangular silicon surfaces K/Si(111)-B and SiC(0001). The
calculated spectra present low energy features of magnetic origin with a
reduced dispersion ~10-40 meV compared with the center-of-mass spectra
bandwidth ~0.2-0:3 eV. Remarkably, we find that the quasiparticle signal
survives only around the magnetic Goldstone modes. Our findings would position
these silicon surfaces as new candidates to investigate non-conventional
quasiparticle excitations.Comment: 5 pages, 4 figures. To be published in Journal of Physics: Condensed
Matte
Clean and As-covered zinc-blende GaN (001) surfaces: Novel surface structures and surfactant behavior
We have investigated clean and As-covered zinc-blende GaN (001) surfaces,
employing first-principles total-energy calculations. For clean GaN surfaces
our results reveal a novel surface structure very different from the
well-established dimer structures commonly observed on polar III-V (001)
surfaces: The energetically most stable surface is achieved by a Peierls
distortion of the truncated (1x1) surface rather than through addition or
removal of atoms. This surface exhibits a (1x4) reconstruction consisting of
linear Ga tetramers. Furthermore, we find that a submonolayer of arsenic
significantly lowers the surface energy indicating that As may be a good
surfactant. Analyzing surface energies and band structures we identify the
mechanisms which govern these unusual structures and discuss how they might
affect growth properties.Comment: 4 pages, 3 figures, to be published in Appears in Phys. Rev. Lett.
(in print). Other related publications can be found at
http://www.rz-berlin.mpg.de/th/paper.htm
Systematic vertex corrections through iterative solution of Hedin's equations beyond the it GW approximation
We present a general procedure for obtaining progressively more accurate functional expressions for the electron self-energy by iterative solution of Hedin's coupled equations. The iterative process starting from Hartree theory, which gives rise to the GW approximation, is continued further, and an explicit formula for the vertex function from the second full cycle is given. Calculated excitation energies for a Hubbard Hamiltonian demonstrate the convergence of the iterative process and provide further strong justification for the GW approximation
Design and Conduct of the Cost of Justice Survey
The âEveryday Legal Problems and the Cost of Justice in Canadaâ survey (âCoJ surveyâ) 1 is a national everyday legal problems survey carried out as part of the Canadian Forum on Civil Justiceâs Cost of Justice project (CFCJ). 2 The CoJ survey was conducted by the Institute for Social Research (ISR), York University, on behalf of the CFCJ, between September 2013 and May 2014. The 3,051 main study interviews were completed with randomly selected adults from randomly selected households over land line telephones. An additional set of 212 cell phone interviews were also conducted (discussed further below). The interviews averaged just over 21 minutes in length and the response rate was 42%. This technical report briefly outlines the design and conduct of the survey
- âŠ