22 research outputs found

    Biomarkers of secondhand smoke exposure in automobiles.

    No full text
    ObjectivesThe objectives of this study were: (1) to characterise the exposure of non-smokers exposed to secondhand smoke (SHS) in a vehicle using biomarkers, (2) to describe the time course of the biomarkers over 24 h, and (3) to examine the relationship between tobacco biomarkers and airborne concentrations of SHS markers.MethodsEight non-smokers were individually exposed to SHS in cars with fully open front windows and closed back windows over an hour from a smoker who smoked three cigarettes at 20 min intervals. The non-smokers sat in the back seat on the passenger side, while the smoker sat in the driver's seat. Plasma cotinine and urine cotinine, 3-hydroxycotinine (3HC) and 4-(methylnitrosoamino)-(3-pyridyl)-1-butanol (NNAL) were compared in samples taken at baseline (BL) and several time-points after exposure. Nicotine, particulate matter (PM2.5) and carbon monoxide (CO) were measured inside and outside the vehicle and ventilation rates in the cars were measured.ResultsAverage plasma cotinine and the molar sum of urine cotinine and 3HC (COT+3HC) increased four-fold, urine cotinine increased six-fold and urine NNAL increased ∼27 times compared to BL biomarker levels. Plasma cotinine, urine COT+3HC and NNAL peaked at 4-8 h post-exposure while urine cotinine peaked within 4 h. Plasma cotinine was significantly correlated to PM2.5 (Spearman correlation rs=0.94) and CO (rs=0.76) but not to air nicotine. The correlations between urine biomarkers, cotinine, COT+3HC and NNAL, and air nicotine, PM2.5 and CO were moderate but non-significant (rs range =  0.31-0.60).ConclusionsBrief SHS exposure in cars resulted in substantial increases in levels of tobacco biomarkers in non-smokers. For optimal characterisation of SHS exposure, tobacco biomarkers should be measured within 4-8 h post-exposure. Additional studies are needed to better describe the relationship between tobacco biomarkers and environmental markers of SHS

    Assessing Exposures to Household Air Pollution in Public Health Research and Program Evaluation

    No full text
    Abstract: Exposure to smoke from the use of solid fuels and inefficient stoves for cooking and heating is responsible for approximately 4 million premature deaths yearly. As increasing investments are made to tackle this important public health issue, there is a need for identifying and providing guidance on best practices for exposure and stove performance monitoring, particularly for public health research and evaluation studies. This paper, which builds upon the discussion at an expert consultation on exposure assessment convened by the Global Alliance for Clean Cookstoves, the Centers for Disease Control and Prevention, and PATH in late 2012, aims to provide general guidance on what to monitor, who and where to monitor, and how to monitor household air pollution exposures. In addition, we summarize information about commercially available monitoring equipment and the technical properties of these monitors most important for household air pollution exposure assessment. The target audience includes epidemiologists conducting health studies and program evaluators aiming to quantify changes in exposures to estimate the potential health benefits of cookstoves intervention projects

    Household Concentrations and Exposure of Children to Particulate Matter from Biomass Fuels in The Gambia

    No full text
    Particulate matter (PM) is an important metric for studying the health effects of household air pollution. There are limited data on PM exposure for children in homes that use biomass fuels, and no previous study has used direct measurement of personal exposure in children younger than 5 years of age. We estimated PM(2.5) exposure for 1,266 children in The Gambia by applying the cookhouse PM(2.5)-CO relationship to the child’s CO exposure. Using this indirect method, mean PM(2.5) exposure for all subjects was 135 ± 38 μg/m(3); 25% of children had exposures of 151 μg/m(3) or higher. Indirectly-estimated exposure was highest among children who lived in homes that used firewood (collected or purchased) as their main fuel (144 μg/m(3)) compared to those who used charcoal (85 μg/m(3)). To validate the indirect method, we also directly measured PM(2.5) exposure on 31 children. Mean exposure for this validation dataset was 65 ± 41 μg/m(3) using actual measurement and 125 ± 54 μg/m(3) using the indirect method based on CO exposure. The correlation coefficient between direct measurements and indirect estimates was 0.01. Children in The Gambia have relatively high PM(2.5) exposure. There is a need for simple methods that can directly measure PM(2.5) exposure in field studies
    corecore